
c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

eMotion: An SGX extension for migrating

enclaves

Jaemin Park

a , b , ∗, Sungjin Park

a , Brent Byunghoon Kang

b , Kwangjo Kim

b

a The Affiliated Institute of ETRI, P.O.Box 1, Yuseong, Daejeon, Republic of Korea
b Graduate School of Information Security, School of Computing, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong, Daejeon, Republic of Korea

a r t i c l e i n f o

Article history:

Received 18 August 2017

Revised 30 May 2018

Accepted 26 September 2018

Available online 4 October 2018

Keywords:

SGX

Enclave migration

Managed migration

OpenSGX

Trusted execution environment

a b s t r a c t

Software Guard Extensions (SGX) is a good candidate to address sensitive information dis-

closure in cloud computing because SGX creates enclaves for applications that protect secu-

rity sensitive code and data from malicious access. However, existing SGX-enabled Virtual

Machine Managers (VMMs) do not provide live migration of SGX-enabled Virtual Machines

(VMs). This management operation is impossible because the VMM cannot directly access

the Enclave Page Cache (EPC) pages where the VM’s enclaves reside. SGX supports the EPC

page swapping mechanism that evicts the EPC pages into the untrusted memory which the

VMM can access. However, this mechanism has the limitations to be applied to enclave mi-

gration. In this paper, we propose an SGX extension for migrating enclaves called eMotion

that adds additional instructions and migration support to the SGX architecture for enabling

the secure managed migration of running enclaves. eMotion allows that the participating

hosts establish a key used in enclave migration and the VMMs in the hosts migrate running

enclaves using the established key. We implement a prototype on top of OpenSGX, an open

source SGX emulator, to demonstrate the operations of eMotion and to estimate the impact

on enclave migration.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Though cloud computing has been widely adopted in various
areas, security administrators are still reluctant to introduce
cloud computing into their own organizations due to various
security concerns, such as information disclosure. First, in a
multi-tenant environment, attackers could coincidently ac-
cess sensitive information that resides in other guest Virtual
Machines (VMs) due to hypervisor vulnerabilities like CVE-
2015-3340 . Second, a malicious insider can intentionally ac-
cess sensitive information owned by a victim organization’s
VM with cloud management operations. For example, the Vir-
tual Machine Manager (VMM) takes full control of all guest
∗ Corresponding author.
E-mail address: jmpark@nsr.re.kr (J. Park).

https://doi.org/10.1016/j.cose.2018.09.008
0167-4048/© 2018 Elsevier Ltd. All rights reserved.
VMs and the cloud administrator manages the cloud infras-
tructure using the VMM. Therefore, if the cloud administra-
tors attempt to obtain sensitive data used in the guest VMs,
they can achieve it with operations for cloud management.
(e.g., taking a VM snapshot containing a cryptographic key for
database encryption.)

Software Guard Extensions (SGX) is a good candidate that
addresses information disclosure in cloud computing. SGX
creates enclaves for applications that protect security sensi-
tive code and data from malicious access. The enclave pages
consist of the contents of the enclave and the associated
data structures (i.e., SGX Enclave Control Structure (SECS),
and Thread Control Structure (TCS)), and are stored in the
Enclave Page Cache (EPC). The EPC is a subset of the Pro-

https://doi.org/10.1016/j.cose.2018.09.008
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.09.008&domain=pdf
mailto:jmpark@nsr.re.kr
https://doi.org/10.1016/j.cose.2018.09.008

174 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5

c
v
i
f
f
i
t

t
a
a

p
V
f
t
o
f

a
g

f
V
h

u
l
a
v
f
o
(
p
t
m

c

t
a
h
c
e

t
m
t
m
d
m

t
t
r
s

e
m
o
c
a
t
n
k

t
p
O
t
S
i

2

S
w
S
t
i
f
t
b
p
t
p
p
f
(

2

S
t

s
e
e
s

a
S
c
i
m
a

t
E
t

essor Reserved Memory (PRM), which is a part of DRAM in-
isible to other software. This feature prevents higher priv-
leged software (e.g., operating systems (OSes), VMMs, etc)
rom accessing sensitive information in the enclave. There-
ore, the VMM cannot notice the enclave pages even if it has
nformation leak vulnerabilities. Because CPU fetches the con-
ents of the enclave from the PRM in an encrypted form,
he enclave can be protected from external access as well
s from probing attacks on the DRAM bus by an insider
ttacker.

However, there is still a challenging problem with im-
osing SGX into cloud computing: the existing SGX-enabled
MMs (Intel Corporation, 2016a) do not provide live migration

or SGX-enabled VMs . Generally, in the managed migration of
he VM, the source VMM transfers the entire VM’s mem-
ry pages to the destination VMM until the VMs in the dif-
erent physical machines, the source and destination hosts,
re consistent. Then, the destination VMM starts the mi-
rated VM, and the source VMM stops its VM. To this end,
or managed live migration of an SGX-enabled VM, the
MM should transfer the enclave pages to the destination

ost.
However, the VMM cannot transfer the enclave pages as

sual because SGX prevents the VMM, one of higher privi-
eged software, from accessing directly the PRM as mentioned

bove. SGX Developer Guide (Intel Corporation, 2016b) pro-
ides the guideline for migrating enclave data across the plat-
orms, but this guideline cannot be applied to migration of
ther enclave pages excluding the enclave data. Intel’s patents
 Rozas et al., 2017; 2018) presented the instructions and the
latform for enclave migration, but the practical implementa-
ion is not realized yet and the key establishment for enclave

igration is still conceptual.
As a realized mechanism, Gu et al. (2017) presented a se-

ure enclave migration in a self-migration manner. However,
he source host cannot migrate enclaves, which do not use
 specific library for enclave migration, to the destination

ost. Thus, this constraint can cause a decline of usability be-
ause enclave developers should re-implement the existing
nclaves.

The EPC page swapping mechanism can also be considered

o enable the OS/VMM to evict EPC pages into the untrusted

emory and load them into EPC later using dedicated instruc-
ions. However, it is infeasible to apply this mechanism to

anaged enclave migration. First, the destination host cannot
ecrypt the evicted enclave pages because a key used in this
echanism is unique and cannot leave the processor. Second,

his mechanism cannot evict some EPC pages for data struc-
ures such as TCS. Third, this mechanism cannot migrate the
unning enclave because the eviction is only applicable to the
topped enclave.

In this paper, we propose an SGX extension for migrating
nclaves called eMotion that adds additional instructions and

igration support for enabling the secure managed migration

f running enclaves. eMotion allows that the different physi-
al hosts establish a key used in enclave migration securely
nd the VMMs in the hosts migrate running enclaves using
he established key. eMotion guarantees that only the desig-
ated enclave and the SGX-enabled processor can access this
ey.
The followings are the contributions of our paper.

• SGX extension for migrating enclaves. We supplement the
current SGX implementation with eMotion, additional in-
structions and migration support in order that the VMM

migrates the running enclaves securely between the dif-
ferent physical hosts.

• Architecture for migrating enclaves. We present an architec-
ture to show the practical deployment of eMotion.

• Prototype implementation. We implement a prototype on top

of OpenSGX(Jain et al., 2016), an open source SGX emulator,
to demonstrate the operations of eMotion and to estimate
the impact on enclave migration.

This paper is organized as follows: Section 2 describes
he SGX features for managed enclave migration. We pro-
ose eMotion in Section 4 and present a prototype based on

penSGX in Section 5 . We evaluate eMotion and its proto-
ype in Section 6 . We discuss limitations and future work in

ection 7 . We mention related work, and conclude this paper
n Section 8 and 9 , respectively.

. Software Guard Extensions (SGX)

GX is an extended set of instructions that supports enclaves
here security sensitive code and data are protected by an

GX-enabled processor. The SGX-enabled processor guaran-
ees the confidentiality and the integrity of an enclave by us-
ng an isolated memory area, the EPC, that cannot be accessed

rom outside the enclave. When the enclave is loaded and ini-
ialized, the SGX platform detects if the enclave is not altered

y comparing the enclave’s calculated measurement with the
re-produced one. Remote attestation allows a remote entity
o verify that the enclave is running inside the SGX-enabled

rocessor and thus can be trustworthy. In this section, we ex-
lain SGX features used in eMotion and the SGX details can be
ound in Intel Corporation (2016b, 2014) , Costan and Devadas
2016) , and Anati et al. (2013) .

.1. SGX data structures

GX data structures are a collection of data structures used

o manage enclave operations. The EPC, a subset of the PRM,
tores these data structures along with the contents of the
nclaves. The SGX-enabled processor records the metadata of
ach EPC page in the Enclave Page Cache Map (EPCM). In this
ection, we briefly explain the structures used in eMotion.

SGX Enclave Control Structure (SECS) is metadata associ-
ted with each enclave. A dedicated EPC page, PT_SECS , stores
ECS. SECS is allocated when an enclave is created and deallo-
ated when the enclave is destroyed. This structure contains
nformation of enclave identification (ID), enclave measure-

ent, and enclave control. SECS identifies an enclave inside
nd outside the processor.

Thread Control Structure (TCS) is metadata used to support
he multi-thread execution of an enclave code. A dedicated

PC page, PT_TCS , stores TCS. Each logical processor uses TCS
o execute the enclave code.

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5 175

G

G

PAGEINFO (Page Information) is an architectural data struc-
ture used as a parameter in EPC management instructions.
This data structure contains the addresses of the enclave
page, SECINFO (Security Information)/PCMD (Page Crypto
Metadata), and SECS. SECINFO consists of flags that describe
the state of the enclave page. PCMD is crypto metadata associ-
ated with a paged-out EPC page that includes enclave ID, MAC
(Message Authentication Code) for the evicted EPC page, page
metadata, etc.

2.2. Local attestation

Local attestation is a cryptographic way for internal enclaves
to attest other enclaves that reside inside the processor for
providing higher-level functions like remote attestation. An
enclave can prove its identity to other enclaves by produc-
ing REPORT because the signature block in the REPORT is pro-
duced by the same platform and thus is verifiable inside the
processor.

2.3. Remote attestation

Remote attestation is a cryptographic way for remote entities
to attest to the trustworthiness of the underlying hardware
platform and the running enclaves. Intel provides the enclave
for remote attestation, Quoting Enclave (QE), as an Architec-
tural Enclave (AE) that is the privileged enclave in the SGX
framework. QE produces QUOTE and the remote entities verify
the signature block in the QUOTE by using the public key from
the Intel Enhanced Privacy ID (EPID) group key.

2.4. EPC page swapping

The BIOS sets the size of the PRM, and thus SGX supports EPC
page swapping for the OS/VMM to evict EPC pages into un-
trusted memory in order to overcome the limited size of the
PRM. EPA allocates a version array where random numbers
used to encrypt each EPC page for the anti-replay are stored.
EWB evicts EPC pages with encryption and integrity protection,
and ELDU/B loads them with integrity check and decryption.
Thus, EPC paging instructions can maintain the same security
properties (confidentiality, anti-replay, and integrity) with the
PRM. The key used in this mechanism is unique for the spe-
cific processor and the outside of the processor cannot access
this key. Prior to the eviction, EWB assures that the EPC pages
have been blocked and the running enclave is stopped.

3. Problem definition

3.1. System models

We consider two different physical machines, the source host
(H S) and the destination host (H D) where the source VMM
(VMM S) and the destination VMM (VMM D) are running. In gen-
eral, the VMM supports the migration of multiple VMs concur-
rently. For the simplicity and focusing on the intrinsic prob-
lems of enclave migration, we assume that H S has a single
VM (V) which uses enclaves (E) including AEs and E has no
sealed data. VMM S executes a migration protocol P to transfer
the memory pages of V and E along with the VM state (S) to
VMM D . VMM D also executes P to load the memory pages of V
and E along with S into its memory for restoring V and E. H S

and H D locate in the same network infrastructure where they
can communicate each other and access the same VM image
of V .

3.2. Threat models

We trust only enclaves and the mechanisms implemented in
the SGX-enabled processors. VMM S and VMM D are usually op-
erating as intended, but they can become malicious when the
attacker Adv . corrupts them via the security attacks or soft-
ware bugs of the VMMs and/or the VMs. As a result, Adv . can
have full control over the memory and the network resources
of the VMMs and the VMs, and it can read all memory pages
of DRAM excluding the PRM and sniff all network packets.
When VMM S and VMM D execute P, Adv . attempts to acquire
the valuable information of E by sniffing the transferred mem-
ory pages and reading the memory pages that two VMMs can
access.

Adv . can conduct the attacks like rollback and forking at-
tacks (Brandenburger et al., 2017) that can violate the data
consistency of E. Adv . that subverts VMM S can also incur the
state inconsistency of E by preventing VMM S from tracking
the changes of the EPC pages during P . We do not consider
these types of attacks because cloud tenants can detect them
via the existing detection mechanism (Brandenburger et al.,
2017). Adv . can simply discard messages for executing P ; such
a denial-of-service (DoS) attack is out of scope in this paper.

3.3. Goals

To migrate E in the managed manner securely, two different
physical hosts (i.e., H S and H D) should establish Migration Mas-
ter Key (MMK). Also VMM S and VMM D can use MMK to migrate
enclave pages of E . We define the goals of these operations for
secure managed migration of the enclave.

1: End-to-end protection on migrated enclave pages
H S and H D should establish MMK without the involvement
of an additional server (e.g., trusted third party). This MMK
should protect the migrated enclave pages between H S and
H D in the end-to-end manner. When evicted to the un-
trusted memory by VMM S , transferred to VMM D by VMM S ,
and loaded to the PRM by VMM D , the migrated enclave
pages should retain Confidentiality, Integrity, and Anti-
replay (CIA) not to ruin the genuine security properties
supported by SGX. This end-to-end protection prevents
Adv . from extorting the sensitive information via sniffing
the migrated enclave pages between two hosts or reading
the untrusted memory in both hosts.

2: Restricted access to MMK

Only the designated enclave and the SGX-enabled proces-
sor should be able to access MMK . It is crucial to restrict
the access on MMK only to trustworthy parties because
Adv . can attempt to steal MMK by reading the untrusted
memory in both hosts. If other enclaves except for the des-
ignated enclave are malicious or erroneous, Adv . can use
these enclaves to export MMK to the untrusted memory.

176 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5

G

4

4

e
e
a
(

e
a
e

e
e
i

r
(

m
i
P

d
p
e

F
e

4
a

T

l
t
c
s

4
M
t
t
c
p
r
a
c
p
(
d

t
(

H
t

A
s

e
v

i
M
t
d

Thus, MMK should not be revealed to V, VMM S , VMM D and

other software components except for the designated en-
clave.

3: New SGX instructions for VMMs to migrate running en-
claves
New SGX instructions should support VMMs to migrate
running enclaves because VMMs cope with operations for
migrating the SGX-enabled VM (V and E) in the managed

manner. Using these instructions, VMM S should be able to
evict the contents of the enclave as well as the associated

data structures to the untrusted memory securely. VMM D

should be able to load the entire enclave pages to its PRM

by leveraging these instructions. Recall that the EPC page
swapping mechanism cannot evict some EPC pages (e.g.,
TCS) and can evict only the stopped enclave.

. Design

.1. Overview

Motion is an SGX extension for VMMs to migrate the running
nclave securely. eMotion consists of additional instructions
nd migration support as shown in Fig. 1 . Migration Enclave
ME), a new AE, establishes MMK between H S and H D securely.
Motion adds a new SGX instruction (EPUTKEY), one SECS
ttribute (MIGRATION) and one register (MKR) to the SGX-
nabled processor for enforcing the access control on MMK .
Motion also adds new SGX instructions (ESE, ESL) to the SGX-
nabled processor so that VMM S and VMM D can migrate E us-
ng MMK .

Using eMotion, we introduce two phases: key exchange with
emote attestation (P 1) and secure eviction and loading for migration
 P 2), which compose P . ME executes P 1 to establish MMK via re-

ote attestation and store MMK into MKR (Migration Key Reg-
ster) of the SGX-enabled processor. VMM S and VMM D proceed

 2 to migrate E using MMK .
In this section, we explain eMotion by dividing it into two

istinct extensions: one for P 1 and the other for P 2 . We also
resent diagrams of two phases and an architecture based on
Motion.

ig. 1 – eMotion; register read/write (→) and instruction

xecu tion (�).

M
s
c
a
t
m
t
e
Q

M

M

w

v
o
s
.2. SGX extension for key exchange with remote
ttestation

o migrate E from H S to H D securely, H S and H D should estab-
ish MMK first. MKR of the SGX-enabled processor should store
he established MMK for being used in P 2 . Other entities ex-
ept for the designated enclave and the SGX-enabled proces-
or should not be able to access this key.

.2.1. Establishing migration master key by migration enclave
igration Enclave (ME), which belongs to each host, is an AE

hat establishes MMK between H S and H D . MEs perform mu-
ual remote attestation to convince that the SGX-enabled pro-
essor and ME in the other host are trustworthy. During the
rocesses of remote attestation, MEs exchange keying mate-
ials like nonces and agree on MMK per the result of remote
ttestation. eMotion is independent of the underlying key ex-
hange protocol used by ME. ME can utilize any key exchange
rotocols such as Diffie-Hellman (DH) key exchange protocol
 Diffie and Hellman, 1976) depending on the security policy
efined by the ME provider.

When enclave migration starts, the VMMs trigger ME Hosts
o launch P 1 for establishing MMK between the source ME
 ME S) and the destination ME(ME D), that are running in H S and
 D , respectively. Then, ME Host executes its ME to manipulate

he key exchange messages according to Algorithm 1 . ME gen-

lgorithm 1 Protocol for manipulating key exchange mes-
ages.

ME : Generate key exchange message, msg
h ← H (msg)
REPORT ← LocalAttest (h)

ME → QE : msg, REPORT
QE: if REPORT is valid then Generate QUOTE else Abort
QE → ME : QUOTE
ME: return msg, QUOTE

rates a key exchange message (msg). ME calculates the hash

alue, h , of msg using a cryptographic hash function, H (·). ME
nvokes LocalAttest(·) to obtain REPORT that includes a

AC tag for local attestation. LocalAttest(·) , which calls
he EREPORT instruction, calculates the MAC of the REPORT
ata structure containing h using Report key, and feeds the
AC into the MAC tag. ME requests QE to generate QUOTE by

ending msg and REPORT . QE checks if REPORT is valid by re-
omputing the MAC over the REPORT data structure using msg
nd Report key, and verifying that ME produced REPORT inside
he same SGX-enabled processor. Note that the SGX imple-

entation guarantees that Report key is known only to the
arget enclave (i.e., QE) and the EREPORT instruction (Anati
t al., 2013). Then, QE produces QUOTE of msg and replies
UOTE to ME. The ME Host sends QUOTE with msg to the other
E Host for remote attestation.

ME executes Algorithm 2 to derive MMK . Suppose that the
E Host receives msg ′ and QUOTE ′ from the other ME Host,
hereas the key exchange message of the ME Host is msg . By

erifying QUOTE ′ for remote attestation, ME convinces that the
pposite host equips with the legitimate SGX-enabled proces-
or and AEs. To this end, the ME Host connects to the Intel-

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5 177

Fig. 2 – Diagram of key exchange with remote a ttestation; register read/write (→) and instruction execution (�).

Algorithm 2 Protocol for deriving MMK .

1: if QUOTE ′ is valid then

2: if msg is NULL then E xecut e Al gorithm 1
3: MMK ← Derive (msg, msg ′)
4: else Abort
5: return MMK

operated service called Intel Attestation Service (IAS) (Intel
Corporation) that verifies QUOTE ′ and returns the result of re-
mote attestation via the protocol that the SGX implementa-
tion supports. If ME did not generate its key exchange message
(msg), ME executes Algorithm 1 . After remote attestation com-
pletes successfully, MEs invoke Derive(·) to derive MMK
using keying materials that are exchanged via msg and msg ′

during remote attestation. Only MEs in H S and H D can access
MMK at this point, and any additional server cannot partici-
pate in this key exchange. ME utilizes local and remote attesta-
tion that the SGX implementation supports, and thus refer to
Intel Corporation (2014) , Intel Corporation (2016b) , Costan and
Devadas (2016) , Anati et al. (2013) , and Intel Corporation for
further details.

4.2.2. Enforcing access control on migration master key
EPUTKEY is an ENCLU instruction (i.e., user-level instruction)
to store MMK into MKR of the SGX-enabled processor. MEs exe-
cute this instruction after MMK is established so that the SGX-
enabled processors can use MMK to migrate E . For the end-to-
end protection on the migrated enclave pages, MMK should
be accessible only by MEs (i.e., the producers of MMK) and the
SGX-enabled processors (i.e., the consumers of MMK).

To realize this restriction, we add an access control mech-
anism that utilizes Launch Enclave (LE) and MIGRATION. MI-
GRATION is the proposed SECS attribute that is added into the
current SGX implementation in order that only ME can exe-
cute EPUTKEY. LE checks if MIGRATION of each enclave is ille-
gally configured when the enclave is initialized. Furthermore,
the SGX-enabled processor allows only the enclave whose MI-
GRATION is set to true to invoke EPUTKEY.

Generally, LE is an AE that prevents unauthorized enclaves
from setting specialized attributes (e.g., PROVISONKEY) of
their SECSs to access the sensitive services (e.g., provision-
ing service). We extend this mechanism to prevent other soft-
ware components including malicious enclaves from falsi-
fying MMK inside and outside the SGX-enabled processor.
During the enclave initialization, LE checks if the initializ-
ing enclaves, except for ME, set their MIGRATIONs to true
illegally by rejecting initialization requests from those en-
claves. This check routine is possible because LE refers to
the list of authorized enclaves and signs the initialization to-
kens (called EINITTOKEN) for the listed enclaves. Thus, only
MEs can receive valid EINITTOKEN s from LE among enclaves
that attempt to set their MIGRATIONs to true. Without a valid
EINITTOKEN , any enclave cannot be launched in the SGX-
enabled processor (Costan and Devadas, 2016).

The SGX-enabled processor further checks if a caller en-
clave is ME by examining MIGRATION when the enclave in-
vokes EPUTKEY. If MIGRATION of the enclave does not set to
true, the SGX-enabled processor simply rejects the invocation
of EPUTKEY. This two-step verification, which is enforced by LE
and the SGX-enabled processor, convinces that only ME can
execute EPUTKEY. As a result, MMK is only accessible by the
designated enclaves (i.e., MEs) and the SGX-enabled proces-
sors.

4.2.3. Diagram of key exchange with remote attestation

Fig. 2 depicts the diagram of P 1 . Recall that eMotion does not
limit the underlying key exchange protocol if MMK is estab-
lished between ME S and ME D based on remote attestation.
Thus, the flows in Fig. 2 can vary slightly depending on used
protocols. When VMM S launches the migration, VMM D also
starts V with the exact parameters that VMM S used. VMM S ini-
tiates P 1 by establishing the network connection with VMM D .
Then, the VMMs request ME Hosts to execute MEs for oper-
ating the key exchange protocol. ME D generates the key ex-
change message (msg1), and performs local attestation with
its local QE. When local attestation succeeds, the QE produces
QUOTE1 of msg1 . ME D sends msg1 and QUOTE1 to ME S via
VMM D and VMM S . ME S verifies QUOTE1 , and generates the key
exchange message (msg2). Similarly, ME S performs local attes-
tation with its local QE, and receives QUOTE2 from the QE. ME S
sends msg2 and QUOTE2 to ME D via VMM S and VMM D . Then,
ME S generates MMK using keying materials included in msg1
and msg2 . ME D verifies QUOTE2 , and also generates MMK . Fi-
nally, MEs execute EPUTKEY to store the established MMK to
MKR.

4.3. SGX extension for secure eviction and loading for
migration

4.3.1. Privileged instructions for migrating enclaves
eMotion supports ESE (Enclave Secure Eviction) and ESL (En-
clave Secure Loading) for VMM S and VMM D to evict and load

178 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5

t
C
p
I
e

E

d
(
d
d

M

w

p
f
m
I
t
p
t

f
g
a
p
i
t

u

M

w

r
g

2
p
a
S

E
t

T
p
e
l

P
t

o
m

4
D
c

T
a
p
p

m
t

V
u
o

t

T
t

V
n

V
r

V
e
o
t
b
d
e
e
a

he entire enclave pages securely. These instructions are EN-
LS instructions, privileged instructions, that extend the EPC

aging instructions (EWB , ELDU/B). Migration Key (MK) and

nitialization Vector (IV) are derived from MMK inside the SGX-
nabled processor during the initial execution of ESE and ESL.
SE and ESL utilize NIST SP 800–108 (Chen, 2009) as a key
erivation function that the SGX implementation supports
 Costan and Devadas, 2016). Suppose that KDF (·) is the key
erivation function that ESE and ESL use. Then, MK and IV are
erived using Eq. (1) .

K = KDF (MMK, C MK)

IV = KDF (MMK, C IV) (1)

here C MK and C IV are constant string values.
ESE encrypts and integrity protects the migrated enclave

ages using MK and IV . For anti-replay, IV increases by one
or each EPC page, but MK does not change until the enclave

igration completes. Therefore, the protection using MK and

V can preserve CIA of the migrated enclave pages. Because
he SGX-enabled processors perform the derivation and the
rotection, it is impossible for other entities such as the VMMs
o notice and falsify the migrated enclave pages.

This derivation can utilize VM identifiers to generate dif-
erent MK s and IV s from each guest VM when VMM S mi-
rates multiple SGX-enabled VMs simultaneously. That is, ESE
nd ESL can derive multiple MK s and IV s for guest VMs by
assing VM identifiers as input parameters to the underly-

ng key derivation function. Suppose that VM i is an VM iden-
ifier where i = 1 , 2 , 3 , · · · . Then, MK and IV for VM i are derived
sing Eq. (2) .

K i = KDF (MMK, C MK , VM i)

IV i = KDF (MMK, C IV , VM i) (2)

here MK i and IV i are MK and IV for VM i .
To reuse the SGX implementation, ESE and ESL execute

outines similar to the EPC paging instructions. The crypto-
raphic algorithm used by ESE and ESL is AES-GCM (Dworkin,
007), which is used by the EPC paging instructions and sup-
orts both confidentiality and integrity. These instructions
lso take an input as the unit of a single EPC page like other
GX instructions.

VMM S executes ESE to evict enclave pages of the running
 from its PRM to the untrusted memory. ESE evicts the en-
ire enclave pages, including PT_SECS , PT_TCS , and PT_REG .
his instruction encrypts and integrity protects the enclave
ages using MK and IV. VMM D executes ESL to load the evicted

nclave pages from the untrusted memory to its PRM. ESL
oads the evicted enclave pages into the PRM, where PT_SECS ,
T_TCS , and PT_REG reside. This instruction decrypts and in-
egrity checks the evicted enclave pages using MK and IV .

Fig. 3 depicts the flow charts of ESE and ESL. For the sake
f simplicity, the flow charts omit routines used to check the
emory alignment.
ESE (Fig. 3 a) works as follows:

1. Checks if the evicting page locates in EPC (if not, page fault
exception (#PF) is raised).
2. Allocates the output addresses for the evicted EPC page
and PCMD.

3. Searches EPCM to retrieve the metadata of the EPC page.
4. Searches the associated SECS if the EPC page type is
PT_REG or PT_TCS .

5. Sets a temporary MAC header using the metadata in the
searched EPCM.

6. Encrypts and integrity protects the EPC page.
7. Sets PCMD to complete the page information using the

metadata in the searched EPCM.

ESL (Fig. 3 b) works as follows:

1. Checks if the loading page locates in EPC (if not, the page
fault exception (#PF) is raised).

2. Allocates the input addresses of the evicted EPC page and

PCMD.
3. Searches EPCM to retrieve the metadata of the loading EPC

page.
4. Sets a temporary MAC header using the metadata in the

searched EPCM.
5. Decrypts the EPC page.
6. Compares the computed MAC with the received one.
7. Sets EPCM using the decrypted metadata in the temporary

MAC header.

.3.2. Diagram of secure eviction and loading for migration

uring executing P for V, VMM S starts P 2 when VMM S en-
ounters the memory pages of E in its managed page table.
he initial executions of ESE and ESL use MMK to derive MK

nd IV , which are utilized to evict and load the entire enclave
ages securely. VMM S executes ESE to evict the enclave
ages of E using MK and IV from its PRM to the untrusted
emory. Then, VMM S transfers the evicted enclave pages

o VMM D . Once VMM S transfers the evicted enclave pages,
MM D executes ESL to load them using MK and IV from the
ntrusted memory to its PRM. Fig. 4 depicts the diagram

f P 2 .
During P 2 , VMM S checks if each enclave page alters by

racking the accessed and dirty flags of the enclave pages.
he VMM utilizes the Extended Page Table (EPT) to manage

he VM’s address space that includes the enclave pages. Thus,
MM S can notice the accessed and dirtied EPC pages by scan-
ing the EPT. When detecting the updated enclave pages,
MM S executes ESE against the updated enclave pages and

etransmits the output to VMM D .
VMM S can also transfer the swapped enclave pages to

MM D during VM migration. Because VMM S swapped out the
nclave pages due to the lack of its PRM, VMM S can be aware
f the swapped enclave pages. However, VMM S cannot notice
he swapped enclave pages if V swaps out the enclave pages
y itself. This mismatch between VMM S and V can be ad-
ressed if VMM S emulates SGX instructions for V (Chakrabarti
t al., 2017). To migrate the swapped enclave pages, VMM S ex-
cutes the EPC paging instructions to load them to its PRM

gain and continues to execute ESE for evicting the enclave
pages.

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5 179

Fig. 3 – Flow charts of ESE and ESL.

Fig. 4 – Diagram of secure eviction and loading for migration; register read/write (→), and instruction execution ().

4.4. eMotion architecture

Fig. 5 depicts an architecture to show the practical deployment
of eMotion. We assume that VMM S in H S migrates V along with
E to VMM D in H D .

P 1 establishes MMK for enclave migration between H S and
H D . When starting P to migrate V along with E, VMM S trig-
gers ME Host, a daemon running in the host, to execute ME S .
ME S proves its authenticity to QE based on local attestation
and to ME D based on remote attestation. In consequence of
remote attestation, ME S and ME D establish MMK and execute
EPUTKEY to store MMK into MKRs of the SGX-enabled proces-
sors.

In P 2 , VMM S executes ESE to evict the enclave pages of E to
the untrusted memory, and VMM D executes ESL loads them
to its PRM. Because the VMMs manage the memory mappings
of the VM and its enclaves, the VMMs can pass the physical
addresses of the enclave pages (in the PRM) and the evicted
enclave pages (in the untrusted memory) to ESE and ESL, re-
spectively. After loading the enclave pages, VMM D activates
V along with the enclaves including E using S received from
VMM S . Because VMM S transfers VM’s whole memory pages in-

cluding the entire enclave pages and VM state to VMM D , VMM D

can restore the execution of V and E .

5. Implementation

We have implemented a prototype of eMotion on top of
OpenSGX (Jain et al., 2016) in a Dell Inspiron-13-7359 (Intel
Core i5-6200 2.30GHz quad core CPU, 8GB RAM) machine run-
ning Ubuntu 14.04 LTS (64-bit). Using this open source SGX em-
ulator, we add additional instructions and migration support
to demonstrate the operations of eMotion.

5.1. OpenSGX

OpenSGX is an open source SGX emulator that emulates the
SGX instructions and provides operating components. This
emulator is implemented on top of QEMU’s user-mode em-
ulation. OpenSGX extends the CPU state of QEMU by adding
CREGS data structure. CREGS maintains registers about the
enclave context and the current instruction pointer. This data
structure controls a program’s next executing point when
the enclave enters and exits. OpenSGX utilizes the QEMU

180 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5

Fig. 5 – An architecture of eMotion; key exchange with remote attestation (), and secure eviction and loading for
migration ().

h
u
s
h

5

W

E
S
o
c

W
f
i
(
E
C
h
a
t
l
t

2

a

P
l
c
c

5

I
O
t
e

e

6

6

W
i

t
M
a
S
g
f

elper routine and adds helper_sgx_encls(u) for em-
lating ENCLU/ENCLS instructions. When ENCLU/ENCLS in-
tructions are invoked, the helper functions implemented in

elper_sgx_encls(u) are called.

.2. eMotion on OpenSGX

e implement three new SGX instructions (EPUTKEY, ESE,
SL), migration support (MEs, MKR and MIGRATION), and other
GX components (QEs) to OpenSGX. We implement MEs to
perate a sample of P 1 based on the 1024-bit DH key ex-
hange protocol (Diffie and Hellman, 1976) to establish MMK .
e also implement QEs to use a pre-defined RSA key pair

or signing each key exchange message from MEs and ver-
fying each REPORT from MEs. QE and ME utilize PolarSSL
 PolarSSL Project) for local and remote attestation. We add

PUTKEY to helper_sgx_enclu , and insert MKR into the
REGS data structure of QEMU SGX. We add ESE and ESL to
elper_sgx_encls and implement the routine to derive MK

nd IV when these privileged instructions execute for the first
ime. To support CIA of the evicted enclave pages, ESE and ESL
everage OpenSSL 1.0.2d (OpenSSL Project) to encrypt and in-
egrity protect the enclave pages based on AES-GCM (Dworkin,
007).

We add a new OpenSGX application (hereafter, vmm) that
cts as the VMMs (VMM S and VMM D) for executing P M

. After
 1 completes, vmm in each host calls the functions of the OS-
evel emulation wrappers for ESE and ESL. Once both hosts
omplete P 2 , vmm in H D attempts to re-enter the migrated en-
lave (E) and check if enclave migration has been completed.

.3. Implementation result

n the current prototype, we add a total of 2,286 lines of code to
penSGX and confirm the operations of eMotion. Fig. 6 shows

he implementation result of the prototype. We describe the
xecution steps as follows:
1. ME S requests ME D to start P 1 . Then, ME D generates msg1 ,
and requests the destination QE to generate QUOTE1
(Fig. 6 e).

2. When local attestation succeeds, ME D responds with

QUOTE1 of msg1 for remote attestation (Fig. 6 f).
3. When receiving msg1 and QUOTE1 , ME S verifies QUOTE1 .

If remote attestation succeeds, ME S generates msg2 , and

requests the source QE to generate QUOTE2 (Fig. 6 b).
4. When local attestation succeeds, the source QE responds

with QUOTE2 of msg2 for remote attestation (Fig. 6 c).
5. When receiving msg2 and QUOTE2 , ME D verifies QUOTE2 .

If remote attestation succeeds, ME D generates MMK based

on msg1 and msg2 . In the same way, ME S generates MMK

(Fig. 6 b and e).
6. MEs cooperate with E s in both hosts for executing EPUTKEY

to store MMK to MKR (Fig. 6 a and d).
7. The vmm in H S executes ESE to evict the entire enclave

pages of E (Fig. 6 a).
8. The vmm in H D executes ESL to load the evicted enclave

pages of E . Then, vmm again launches E to check if E is
migrated successfully (6 d).

As indicated by the arrow in Fig. 6 d, vmm migrates E using
Motion.

. Evaluation

.1. Analysis

e evaluate eMotion from the perspective of the goals defined

n Section 3 .
In P 1 , ME S and ME D in both hosts perform remote at-

estation to convince that two legitimate enclaves establish

MK because local and remote attestation can vouch for this
uthentication. Additionally, it promises that two legitimate
GX-enabled processors execute this protocol because only
enuine processors can perform remote attestation success-
ully. During P 2 , ESE encrypts and integrity protects the en-

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5 181

Fig. 6 – Implementation result of eMotion in OpenSGX.

clave pages and ESL integrity checks and decrypts the evicted
enclave pages using MK and IV , which are derived from MMK.
IV increases by one for each EPC page to guarantee anti-replay.
Thus, the migrated enclave pages can guarantee CIA during
enclave migration. During P 1 and P 2 , no additional trusted
server involves, but rather two participating hosts establish
MMK directly to provide the end-to-end protection on the mi-
grated enclave pages. Adv . cannot acquire MMK because it can-
not access the EPC pages directly, which is protected by the
SGX-enabled processor, and the access on MMK is restricted
only to MEs and the SGX-enabled processors. Adv . cannot read
the migrated enclave pages in plain-text because the SGX-
enabled processor encrypts the migrated enclave pages. More-
over, Adv . cannot violate the security properties of the mi-
grated enclave pages during enclave migration because ESE
and ESL guarantee CIA of the migrated enclave pages (G1).
eMotion stores MMK in MKR of the SGX-enabled processor and
restricts the execution of EPUTKEY only to MEs. Thus, no other
software including the VMs and the VMMs can use or change
MMK illegally. This restriction on EPUTKEY is not avoidable
because LE prevents other enclaves from setting MIGRATION
during the enclave initialization, and the SGX-enabled proces-
sor checks if the caller sets MIGRATION when EPUTKEY is in-
voked. Adv . cannot hijack MMK established by MEs as well be-
cause they are infeasible to access directly the EPC pages and
MKR of the SGX-enabled processor where MMK resides (G2).
We add new SGX instructions (ESE and ESL) to evict and
load the entire enclave pages including ones that cannot be
evicted and loaded by the existing EPC paging instructions.
During P 2 , VMM S can evict the entire enclave pages of the run-
ning E to the untrusted memory using ESE and VMM D can load
the evicted enclave pages to its PRM using ESL. To migrate the
running E, VMM S transfers the update enclave pages continu-
ally and transfers its running state S to VMM D at the end of
P M

. Because of this operation, VMM D can restore the mem-
ory mappings for E and activate the execution of E . Thus, us-
ing newly added SGX instructions, two VMMs can migrate the
running E (G3).

6.2. Performance

We measure the overhead of eMotion to estimate the im-
pact on the migration time and migration downtime of SGX-
enabled VMs. We use the prototype based on OpenSGX as
mentioned in Section 5 . Though this performance evaluation
is not measured in the actual SGX-enabled machine, we ex-
pect that these results can help others understand and esti-
mate the overheads caused by managed enclave migration.

6.2.1. Overhead in key exchange with remote attestation

Table 1 shows the overhead caused by key exchange with re-
mote attestation in ME and QE in terms of the number of in-

182 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5

Table 1 – The number of instructions in ME and QE during
key exchange with remote attestation.

ME QE

SGX instructions 110 39
Normal instructions 144M 14M

Table 2 – Elapsed time for secure eviction and loading for
migration.

VMM S VMM D

Elapsed time (ms) 6.69 ms 4.31 ms

s
c
P
1

f
2
a

Q
t

T
t

6
W
l
p
i
a
u
t
a

t
p
a

F
s
t

e
s
m
T
n

s
m
n
t
m

Fig. 7 – Elapsed time for secure eviction and loading for
migration on enclaves; Directory node and Exit node are
Tor enclaves in Jain et al. (2016) .

7

7

T
a

a
o
t
a
t
e
l
E
V
S

7

T
m
t

H
e
Q
d
i
c
e
g
i
t
t
s
m
i
m
c
i

tructions. We refer to the model used in Kim et al. (2015) to
alculate CPU cycles consumed by ME and QE for operating
 1 . Therefore, we assume that each SGX instruction consumes
0K CPU cycles (Baumann et al., 2015), and uses 1.8 CPU cycles
or each normal instruction (Kim et al., 2015). ME consumes
59M cycles to perform 1024-bit DH key exchange protocol
nd derive MMK together with local and remote attestation.
E consumes 25M cycles to generate and verify QUOTE . Note

hat P 1 occurs only once before the actual migration starts.
hus, this overhead is minimal and does not affect the migra-

ion downtime.

.2.2. Overhead in secure eviction and loading for migration

e also measure the overhead caused by secure eviction and

oading for migration in VMM S and VMM D . For this, we im-
lement an sample enclave, which occupies 616 EPC pages

ncluding PT_SECS , PT_TCS , and PT_REG . Recall that VMM S

nd VMM D execute ESE and ESL for each memory page in the
nit of a single EPC page. Obviously, the number of instruc-
ions that VMM S and VMM D execute in P 2 changes according
s the number of EPC pages that consists of E increases.

Because the overhead in P 2 influences the migration down-
ime directly, we measure the elapsed time for P 2 . Table 2 re-
orts that the elapsed time for P 2 in VMM S is about 6.69 ms
nd the one for P 1 in VMM D is about 4.31 ms . As shown in
ig. 3 , the additional routines used to check the condition and

earch SECS in ESE cause this gap between two measured

imes.
Using the measured time, we can further estimate the

lapsed time for a single ESE (10.9 us) and ESL (7.0 us). Be-
ides the sample enclave, we calculate the elapsed time to
igrate Tor enclaves used as a case study for OpenSGX. The

or enclaves include Directory node (472 EPC pages) and Exit
ode (475 EPC pages) as mentioned in Jain et al. (2016) . Fig. 7
hows the elapsed time for secure eviction and loading for
igration on the enclaves; our sample enclave, Directory

ode, and Exit node. This estimation can help cloud tenants
o profile the impacts of their SGX-enabled VMs during live

igration.
. Discussion

.1. Possible deployments

he existing live migration of VMs (Clark et al., 2005; Hines
nd Gopalan, 2009) can use eMotion by adding two phases,
s depicted in Fig. 8 . Key exchange with remote attestation

ccurs during the pre-migration stage to establish the migra-
ion master key between two participating hosts before the
ctual live migration of the SGX-enabled VM begins. During
he iterative pre-copy and/or the stop and copy stages, secure
viction and loading for migration operates using the estab-
ished migration master key when the VMM encounters the
PC pages. Similarly, other live migration protocols (Sahni and

arma, 2012) can add eMotion to support live migration of
GX-enabled VMs.

.2. Limitations

his paper mainly focuses on the extensions of SGX imple-
entation to enable managed enclave migration. The proto-

ype based on OpenSGX confirms the operations of eMotion.
owever, we cannot confirm the operations of the eMotion-
nabled VMMs because OpenSGX, which uses the user-mode
EMU emulation, does not run on top of the VMM. eMotion

oes not consider that the enclave has the sealed data, which

s encrypted by a unique key inside the SGX-enabled pro-
essor. The VMM cannot notice the sealed data because the
nclave performs the sealing operation by itself. Thus, mi-
rating the sealed data of the enclave is another challeng-
ng problem. eMotion can extend to cope with the attacks
hat the active adversaries can perform by combining with

he existing security mechanisms. The active adversaries that
ubvert the VMMs can incur the state inconsistency in the
igrated enclave pages by preventing the VMMs from track-

ng the updated enclave pages. The existing VMM attestation

echanisms (Greene, 2012; TCG, 2012) can launch before en-
lave migration to verify if the genuine VMM launched and

s running on the source host. Moreover, users can utilize the

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5 183

Fig. 8 – Possible deployments of eMotion to existing live migration of VMs.

existing detection mechanism (Brandenburger et al., 2017) to
detect the rollback and forking attacks that the active adver-
saries can perform.

7.3. Future work

We will study about migrating the sealed data of the enclave
securely. We also will research other SGX emulators like S-
OpenSGX (Choi et al., 2017) that run on top of the VMM so
that we realize the eMotion-enabled VMM. Then, our proto-
type will extend to confirm the operations of the eMotion-
enabled VMM.

8. Related work

8.1. Secure live migration of SGX enclaves

Enclave migration is one of the technically challenging is-
sues for introducing SGX into cloud computing, and thus few
peer-reviewed papers on enclave migration can be found (Gu
et al., 2017; Park et al., 2016). Instead, we refer to Intel’s patents
(Rozas et al., 2017; 2018) as supplementary references.

Our previous work (Park et al., 2016) identified problems
in live migration of SGX-enabled VMs and presented a con-
ceptual scheme to address the problems without the actual
implementation. Gu et al. (2017) presented a secure enclave
migration in a self-migration manner. They first introduced
an attack that causes data inconsistency and control incon-
sistency when the self-migration manner of the enclave oc-
curs and proposed two-phase checkpointing to deal with the
attack. Only the control thread running in the migrated en-
clave can access the encryption key and the integrity key for
protecting the migrated enclave pages. This approach neces-
Table 3 – Comparison with the existing migration schemes for

eMotion Gu et al. (201

G1 � �

G2 � �

G3 Managed (�) Self (×)
sitates the enclave to use an additional library that supports
enclave migration, and thus it is impossible to migrate the
enclave without the specific library. Because this work is on
the basis of the self-migration manner, the authors presented
only conceptual design suggestions for new SGX instructions.

Intel presented two patents (Rozas et al., 2017; 2018) to en-
able live migration of SGX-enabled VMs in the managed mi-
gration manner. Intel defines SGX domain control structure
(SDCS) that stores the migration capable keys, which are gen-
erated by the controlling enclave. The source host transmits
SDCS to the destination host via the trusted server, and this
SDCS protects the enclave pages for secure enclave migration.
Intel also presents the instructions for migrating the enclave
using SDCS. Currently, the practical implementation of these
patents is not realized yet. Moreover, the transportation of the
migration capable keys is still conceptual and needs the addi-
tional trusted server. Because the trusted server mediates the
transportation of the migration capable keys, it is difficult to
ensure that only the participating hosts can access the migra-
tion capable keys. Accordingly, the end-to-end protection on
the migrated enclave pages cannot be guaranteed.

Table 3 shows this comparison between eMotion and the
existing migration schemes for SGX enclaves against the goals
defined in Section 3.3 . However, we cannot perform the experi-
mental comparison among eMotion and other approaches be-
cause the Intel’s patents(Rozas et al., 2017; 2018) are not im-
plemented yet and the source code of Gu et al. (2017) is not
available.

8.2. SGX in cloud computing and virtualization

SGX has been leveraged to isolate and protect code and data
in cloud computing and virtualization (Baumann et al., 2015;
Schuster et al., 2015; Dinh et al., 2015; Hunt et al., 2016 ;
SGX enclaves.

7) Intel’s patents (Rozas et al., 2017; 2018)

×
×
Managed (�)

184 c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5

A

(
t

p
t
t

2
(
f

(
t
c
a
i
c
f
a
t
i
s
f

l
a
t

v

2
a

2
s
v
p

9

I
g
g
s
s
i
m
i
e
n
t
t
n
m
e
e
t
f
e
u
o
w

a
V

A

T
t

R

A

A

B

B

B

C

C

C

C

C

C

D

D

D

G

rnautov et al., 2016; Bhardwaj et al., 2016). Baumann et al.
2015) provides shielded execution of unmodified applica-
ions. VC3 (Schuster et al., 2015) and M

2 R (Dinh et al., 2015)
resent secure and privacy-preserving MapReduce computa-
ions, respectively. Hunt et al. (2016) is a distributed sandbox
o protect sandbox instances, and SCONE (Arnautov et al.,
016) is a secure container mechanism for Docker. AirBox
 Bhardwaj et al., 2016) supports fast, scalable and secure edge
unctions for device-cloud interactions. Brandenburger et al.
2017) introduced Lightweight Collective Memory (LCM) to de-
ect rollback and forking attacks by using a distributed proto-
ol for maintaining consistency information by clients. LCM

ddresses the important trust issues in cloud computing, but
ts migration mechanism needs an enclave to stop its pro-
essing and to supplement with additional implementation

or enclave migration. These SGX-based mechanisms lever-
ge the hardware-assisted isolation and protection of applica-
ions’ code and data, so the inherent security concerns raised

n the fields have been addressed. However, without the con-
ideration of enclave migration, these approaches can suffer
rom the management problems such as fault management,
oad balancing, system maintenance, etc. Hence, eMotion can

lleviate these concerns without the loss of security guaran-
eed by SGX.

Recently, Intel extends the SGX support to the VMM-based

irtualization (Intel Corporation, 2016a; Chakrabarti et al.,
017). Intel released the patches for SGX virtualization that en-
ble KVM or Xen guest VMs to run enclaves (Intel Corporation,
016a). Intel also presented the SGX Oversubscription Exten-
ions (Chakrabarti et al., 2017) that overcome the difficulties in

irtualizing SGX memory using the existing EPC paging swap-
ing.

. Conclusion

n this paper, we propose eMotion, an SGX extension for mi-
rating enclaves, that adds additional instructions and mi-
ration support to the SGX architecture for enabling the
ecure managed migration of running enclaves. eMotion

upplements the current SGX implementation with three SGX

nstructions, one register, one SECS attribute and one AE for
igrating the running enclave. Using eMotion, the participat-

ng hosts directly establish the migration master key used in

nclave migration and the VMMs in the hosts migrate run-
ing enclaves using this established key without the loss of

he security properties guaranteed by SGX. eMotion restricts
he access on the migration master key only to the desig-
ated AEs (MEs) and the SGX-enabled processors. We imple-
ent a prototype on top of OpenSGX, an open source SGX

mulator, to demonstrate the operations of eMotion and to
stimate the impact of eMotion on the migration time and

he migration downtime. We hope that Intel refers to eMotion

or realizing managed enclave migration in the actual SGX-
nabled processor and the SGX framework, and cloud tenants
se the evaluation result to estimate the impact of eMotion

n their SGX-enabled VMs during live migration. As future
ork, we will study about migrating the sealed data of enclave,
nd extend our prototype to realize the eMotion-enabled

MM.
cknowledgment

he authors would like to thank the anonymous reviewers for
heir valuable comments and suggestions.

E F E R E N C E S

nati I , Gueron S , Johnson S , Scarlata V . Innovative Technology
for CPU Based Attestation and Sealing. Proceedings of the 2nd

International Workshop on Hardware and Architectural
Support for Security and Privacy, 2013 .

rnautov S , Trach B , Gregor F , Knauth T , Martin A , Priebe C , Lind J ,
Muthukumaran D , OKeeffe D , Stillwell ML , et al . SCONE:
Secure linux containers with Intel SGX, 16; 2016. p. 689–703 .

aumann A , Peinado M , Hunt G . Shielding Applications from an

Untrusted Cloud with Haven. ACM Trans. Comput. Syst.
(TOCS) 2015;33(3) 8:1-8:26 .

hardwaj K , Shih M-W , Agarwal P , Gavrilovska A , Kim T ,
Schwan K . Fast, scalable and secure onloading of edge
functions using AirBox. In: Proceedings of the IEEE/ACM

symposium on edge computing (SEC). IEEE; 2016. p. 14–27 .
randenburger M , Cachin C , Lorenz M , Kapitza R . Rollback and

Forking Detection for Trusted Execution Environments using
Lightweight Collective Memory. In: Proceedings of the 2017
47th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). IEEE; 2017.
p. 157–68 .

hakrabarti S , Leslie-Hurd R , Vij M , McKeen F , Rozas C , Caspi D ,
Alexandrovich I , Anati I . Intel Software Guard Extensions
(Intel SGX) Architecture for Oversubscription of Secure
Memory in a Virtualized Environment. Proceedings of the
Hardware and Architectural Support for Security and Privacy.
ACM, 2017 .

hen L. Rec ommendation for key derivation using
pseudorandom functions, 2009, (https://nvlpubs.nist.gov/
nistpubs/legacy/sp/nistspecialpublication800-108.pdf). Last
accessed 2018-05-12.

hoi C , Kwak N , Jang J , Jang D , Oh K , Kwag K , Kang BB .
S-OpenSGX: a system-level platform for exploring SGX

enclave-based computing. Comput. Secur. 2017;70:290–306 .
lark C , Fraser K , Hand S , Hansen JG , Jul E , Limpach C , Pratt I ,

Warfield A . Live migration of virtual machines. In: Proceedings
of the 2nd conference on symposium on networked systems
design & implementation-Volume 2. USENIX Association;
2005. p. 273–86 .

ostan V, Devadas S. Intel SGX Explained, 2016, (Cryptology ePrint
Archive, Report 2016/086). https://eprint.iacr.org/
2016/086 , last accessed 2018-05-04.

VE-2015-3340: Information leak through

XEN_DOMCTL_gettscinfo, 2018 http://www.cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2015-3340 last accessed

2018-04-29.
iffie W , Hellman M . New Directions in Cryptography. IEEE Trans.

Inform. Theory 1976;22(6):644–54 .
inh TTA , Saxena P , Chang E-C , Ooi BC , Zhang C . M

2 R: enabling
stronger privacy in mapreduce computation. In: Proceedings
of the USENIX Security Symposium; 2015. p. 447–62 .

workin MJ, Recommendation for block cipher modes of
operation: galois/counter mode (GCM) and GMAC, 2007, (https:
//ws680.nist.gov/publication/get _ pdf.cfm?pub _ id=51288). Last
accessed 2018-04-29.

reene J, Intel trusted execution technology - hardware-based

technology for enhancing server platform security, 2012,
(https://www.intel.de/content/dam/www/public/us/en/
documents/white- papers/trusted- execution- technology-
security-paper.pdf). Last accessed 2018-04-29.

http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0006
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-108.pdf
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0009
https://eprint.iacr.org/2016/086
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3340
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0015
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=51288
https://www.intel.de/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf

c o m p u t e r s & s e c u r i t y 8 0 (2 0 1 9) 1 7 3 – 1 8 5 185

Gu J , Hua Z , Xia Y , Chen H , Zang B , Guan H , Li J . Secure Live
Migration of SGX Enclaves on Untrusted Cloud. In:
Proceedings of the 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN).
IEEE; 2017. p. 225–36 .

Hines MR , Gopalan K . Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic
self-ballooning. In: Proceedings of the 2009 ACM

SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. ACM; 2009. p. 51–60 .

Hunt T , Zhu Z , Xu Y , Peter S , Witchel E . Ryoan: a distributed

sandbox for untrusted computation on secret data. In:
Proceedings of the 12th USENIX symposium on operating
systems design and implementation (OSDI 16). USENIX

Association; 2016. p. 533–49 .
Intel Corporation, SGX Virtualization, 2016a, (https://www.01.org/

intel-software-guard-extensions/sgx-virtualization a). Last
accessed 2018-04-29.

Intel Corporation, Intel Software Guard Extensions Developer
Guide, 2016b, (https://www.01.org/sites/default/files/
documentation/intel _ sgx _ developer _ guide _ pdf.pdf b). Last
accessed 2018-04-29.

Intel Corporation, Intel software guard extensions programming
reference, Intel Corporation2014, (https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf). Last
accessed 2018-04-29.

Intel Corporation, 2018Attestation service for intel software
guard extensions (Intel SGX): API documentation, 2018, Intel
Corporation (https://www.software.intel.com/sites/default/
files/managed/7e/3b/ias- api- spec.pdf) Last accessed

2018-05-22
Jain P , Desai S , Kim S , Shih M-W , Lee J , Choi C , Shin Y , Kim T ,

Kang BB , Han D . OpenSGX: an open platform for SGX research.
Proceedings of the Network and Distributed System Security
Symposium, 2016 .

Kim S , Shin Y , Ha J , Kim T , Han D . A first step towards leveraging
commodity trusted execution environments for network
applications. Proceedings of the 14th ACM Workshop on Hot
Topics in Networks. ACM, 2015 .

OpenSSL Project, 2018 (https://www.openssl.org/ b). Last accessed
2018-04-29.

Park J , Park S , Oh J , Won J . Toward live migration of SGX-enabled

virtual machines. In: Proceedings of the 2016 IEEE World

Congress on Services (SERVICES). IEEE; 2016. p. 111–12 .
PolarSSL Project, 2018 (https://www.polarssl.org/ a). Last accessed

2018-04-29.
Rozas CV, Vij M, Leslie-Hurd RM, Zmudzinski KC, Chakrabarti S,

McKeen FX, Scarlata VR, Johnson SP, Alexandrovich I, Neiger
G, et al., Processors, methods, systems, and instructions to
support live migration of protected containers, 2017, US
Patent 9,710,401.

Rozas CV, Vij M, Leslie-Hurd RM, Zmudzinski KC, Chakrabarti S,
McKeen FX, Scarlata VR, Johnson SP, Alexandrovich I, Platform
migration of secure enclaves, 2018, US Patent 9,942,035.

Sahni S , Varma V . A hybrid approach to live migration of virtual
machines. In: 2012 IEEE International Conference on Cloud

Computing in Emerging Markets (CCEM). IEEE; 2012. p. 1–5 .
Schuster F , Costa M , Fournet C , Gkantsidis C , Peinado M ,
Mainar-Ruiz G , Russinovich M . VC3: trustworthy data
analytics in the cloud using SGX. In: Proceedings of the 2015
IEEE Symposium on Security and Privacy. IEEE; 2015. p. 38–54 .

TCG, TCG PC client specific implementation specification for
conventional BIOS, 2012, (https://www.
trustedcomputinggroup.org/wp-content/uploads/TCG _
PCClientImplementation _ 1-21 _ 1 _ 00.pdf). Last accessed

2018-04-29.

Jaemin Park received the B.S. degree from Handong Global Uni-
versity in 2004 and the M.S. degree from Korea Advanced Insti-
tute of Science and Technology (KAIST), South Korea in 2006. He
is a senior researcher at the Affiliated Institute of Electronics and
Telecommunications Research Institute (ETRI) and a Ph.D. candi-
date in Graduate School of Information Security, KAIST. His re-
search interests include cloud computing, system security, and
trusted execution environments especially in Intel SGX.

Sungjin Park received the B.S. degree from Inha University in 2002,
the M.S. degree from POSTECH in 2005, and the Ph.D. degree in
Computer Science, Korea Advanced Institute of Science and Tech-
nology (KAIST), South Korea in 2017. He is a senior researcher at
the Affiliated Institute of Electronics and Telecommunications Re-
search Institute (ETRI). His research interests include cloud com-
puting and system security.

Brent Byunghoon Kang is currently an associate professor at the
Graduate School of Information Security at Korea Advanced In-
stitute of Science and Technology (KAIST). Before KAIST, he has
been with George Mason University as an associate professor. Dr.
Kang received his Ph.D. in Computer Science from the University
of California at Berkeley, and M.S. from the University of Maryland
at College Park, and B.S. from Seoul National University. He has
been working on systems security area including botnet defense,
OS kernel integrity monitors, trusted execution environment, and
hardware-assisted security. He is currently a member of the IEEE,
the USENIX and the ACM.

Kwangjo Kim received the B.Sc. and M.Sc. degrees in Electronic En-
gineering from Yonsei University, Seoul, South Korea, in 1980 and
1983, respectively, and the Ph.D. degree from the Division of Elec-
trical and Computer Engineering, Yokohama National University,
Japan, in 1991. He was a visiting professor with MIT and UCSD,
USA, in 2005, and the Khalifa University of Science, Technology
and Research (KUSTAR), Abu Dhabi, UAE, in 2012, and an Edu-
cation Specialist with the Bandung Institute of Technology (ITB),
Bandung, Indonesia, in 2013. He is currently a full professor at
the Graduate School of Information Security, School of Comput-
ing, Korea Advanced Institute of Science and Technology (KAIST),
South Korea, the Korean representative to IFIP TC-11, and the hon-
orable president of the Korea Institute of Information Security and
Cryptography (KIISC). His current research interests include the
theory of cryptology and information security and their practices.
Prof. Kim had served as a board member of the IACR from 2000 to
2004, the Chairperson of Asiacrypt Steering Committee from 2005
to 2008, and the President of KIISC in 2009. He is a fellow of the
IACR and a member of the IEEE, the ACM, the IACR, and the IEICE.

http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0016
https://www.01.org/intel-software-guard-extensions/sgx-virtualization
https://www.01.org/sites/default/files/documentation/intel_sgx_developer_guide_pdf.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0007
https://www.openssl.org/
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0013
https://www.polarssl.org/
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30427-9/sbref0014
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientImplementation_1-21_1_00.pdf

	eMotion: An SGX extension for migrating enclaves
	1 Introduction
	2 Software Guard Extensions (SGX)
	2.1 SGX data structures
	2.2 Local attestation
	2.3 Remote attestation
	2.4 EPC page swapping

	3 Problem definition
	3.1 System models
	3.2 Threat models
	3.3 Goals

	4 Design
	4.1 Overview
	4.2 SGX extension for key exchange with remote attestation
	4.2.1 Establishing migration master key by migration enclave
	4.2.2 Enforcing access control on migration master key
	4.2.3 Diagram of key exchange with remote attestation

	4.3 SGX extension for secure eviction and loading for migration
	4.3.1 Privileged instructions for migrating enclaves
	4.3.2 Diagram of secure eviction and loading for migration

	4.4 eMotion architecture

	5 Implementation
	5.1 OpenSGX
	5.2 eMotion on OpenSGX
	5.3 Implementation result

	6 Evaluation
	6.1 Analysis
	6.2 Performance
	6.2.1 Overhead in key exchange with remote attestation
	6.2.2 Overhead in secure eviction and loading for migration

	7 Discussion
	7.1 Possible deployments
	7.2 Limitations
	7.3 Future work

	8 Related work
	8.1 Secure live migration of SGX enclaves
	8.2 SGX in cloud computing and virtualization

	9 Conclusion
	 Acknowledgment

	Reference

