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a b s t r a c t 

Software Guard Extensions (SGX) is a good candidate to address sensitive information dis- 

closure in cloud computing because SGX creates enclaves for applications that protect secu- 

rity sensitive code and data from malicious access. However, existing SGX-enabled Virtual 

Machine Managers (VMMs) do not provide live migration of SGX-enabled Virtual Machines 

(VMs). This management operation is impossible because the VMM cannot directly access 

the Enclave Page Cache (EPC) pages where the VM’s enclaves reside. SGX supports the EPC 

page swapping mechanism that evicts the EPC pages into the untrusted memory which the 

VMM can access. However, this mechanism has the limitations to be applied to enclave mi- 

gration. In this paper, we propose an SGX extension for migrating enclaves called eMotion 

that adds additional instructions and migration support to the SGX architecture for enabling 

the secure managed migration of running enclaves. eMotion allows that the participating 

hosts establish a key used in enclave migration and the VMMs in the hosts migrate running 

enclaves using the established key. We implement a prototype on top of OpenSGX, an open 

source SGX emulator, to demonstrate the operations of eMotion and to estimate the impact 

on enclave migration. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Though cloud computing has been widely adopted in various
areas, security administrators are still reluctant to introduce
cloud computing into their own organizations due to various
security concerns, such as information disclosure. First, in a
multi-tenant environment, attackers could coincidently ac-
cess sensitive information that resides in other guest Virtual
Machines (VMs) due to hypervisor vulnerabilities like CVE-
2015-3340 . Second, a malicious insider can intentionally ac-
cess sensitive information owned by a victim organization’s
VM with cloud management operations. For example, the Vir-
tual Machine Manager (VMM) takes full control of all guest
∗ Corresponding author. 
E-mail address: jmpark@nsr.re.kr (J. Park). 
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VMs and the cloud administrator manages the cloud infras-
tructure using the VMM. Therefore, if the cloud administra-
tors attempt to obtain sensitive data used in the guest VMs,
they can achieve it with operations for cloud management.
(e.g., taking a VM snapshot containing a cryptographic key for
database encryption.) 

Software Guard Extensions (SGX) is a good candidate that
addresses information disclosure in cloud computing. SGX
creates enclaves for applications that protect security sensi-
tive code and data from malicious access. The enclave pages
consist of the contents of the enclave and the associated
data structures (i.e., SGX Enclave Control Structure (SECS),
and Thread Control Structure (TCS)), and are stored in the
Enclave Page Cache (EPC). The EPC is a subset of the Pro-
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essor Reserved Memory (PRM), which is a part of DRAM in- 
isible to other software. This feature prevents higher priv- 
leged software (e.g., operating systems (OSes), VMMs, etc) 
rom accessing sensitive information in the enclave. There- 
ore, the VMM cannot notice the enclave pages even if it has 
nformation leak vulnerabilities. Because CPU fetches the con- 
ents of the enclave from the PRM in an encrypted form,
he enclave can be protected from external access as well 
s from probing attacks on the DRAM bus by an insider 
ttacker. 

However, there is still a challenging problem with im- 
osing SGX into cloud computing: the existing SGX-enabled 
MMs ( Intel Corporation, 2016a ) do not provide live migration 

or SGX-enabled VMs . Generally, in the managed migration of 
he VM, the source VMM transfers the entire VM’s mem- 
ry pages to the destination VMM until the VMs in the dif- 
erent physical machines, the source and destination hosts,
re consistent. Then, the destination VMM starts the mi- 
rated VM, and the source VMM stops its VM. To this end,
or managed live migration of an SGX-enabled VM, the 
MM should transfer the enclave pages to the destination 

ost. 
However, the VMM cannot transfer the enclave pages as 

sual because SGX prevents the VMM, one of higher privi- 
eged software, from accessing directly the PRM as mentioned 

bove. SGX Developer Guide ( Intel Corporation, 2016b ) pro- 
ides the guideline for migrating enclave data across the plat- 
orms, but this guideline cannot be applied to migration of 
ther enclave pages excluding the enclave data. Intel’s patents 
 Rozas et al., 2017; 2018 ) presented the instructions and the 
latform for enclave migration, but the practical implementa- 
ion is not realized yet and the key establishment for enclave 

igration is still conceptual. 
As a realized mechanism, Gu et al. (2017) presented a se- 

ure enclave migration in a self-migration manner. However,
he source host cannot migrate enclaves, which do not use 
 specific library for enclave migration, to the destination 

ost. Thus, this constraint can cause a decline of usability be- 
ause enclave developers should re-implement the existing 
nclaves. 

The EPC page swapping mechanism can also be considered 

o enable the OS/VMM to evict EPC pages into the untrusted 

emory and load them into EPC later using dedicated instruc- 
ions. However, it is infeasible to apply this mechanism to 

anaged enclave migration. First, the destination host cannot 
ecrypt the evicted enclave pages because a key used in this 
echanism is unique and cannot leave the processor. Second,

his mechanism cannot evict some EPC pages for data struc- 
ures such as TCS. Third, this mechanism cannot migrate the 
unning enclave because the eviction is only applicable to the 
topped enclave. 

In this paper, we propose an SGX extension for migrating 
nclaves called eMotion that adds additional instructions and 

igration support for enabling the secure managed migration 

f running enclaves. eMotion allows that the different physi- 
al hosts establish a key used in enclave migration securely 
nd the VMMs in the hosts migrate running enclaves using 
he established key. eMotion guarantees that only the desig- 
ated enclave and the SGX-enabled processor can access this 
ey. 
The followings are the contributions of our paper. 

• SGX extension for migrating enclaves. We supplement the 
current SGX implementation with eMotion, additional in- 
structions and migration support in order that the VMM 

migrates the running enclaves securely between the dif- 
ferent physical hosts. 

• Architecture for migrating enclaves. We present an architec- 
ture to show the practical deployment of eMotion. 

• Prototype implementation. We implement a prototype on top 

of OpenSGX( Jain et al., 2016 ), an open source SGX emulator,
to demonstrate the operations of eMotion and to estimate 
the impact on enclave migration. 

This paper is organized as follows: Section 2 describes 
he SGX features for managed enclave migration. We pro- 
ose eMotion in Section 4 and present a prototype based on 

penSGX in Section 5 . We evaluate eMotion and its proto- 
ype in Section 6 . We discuss limitations and future work in 

ection 7 . We mention related work, and conclude this paper 
n Section 8 and 9 , respectively. 

. Software Guard Extensions (SGX) 

GX is an extended set of instructions that supports enclaves 
here security sensitive code and data are protected by an 

GX-enabled processor. The SGX-enabled processor guaran- 
ees the confidentiality and the integrity of an enclave by us- 
ng an isolated memory area, the EPC, that cannot be accessed 

rom outside the enclave. When the enclave is loaded and ini- 
ialized, the SGX platform detects if the enclave is not altered 

y comparing the enclave’s calculated measurement with the 
re-produced one. Remote attestation allows a remote entity 
o verify that the enclave is running inside the SGX-enabled 

rocessor and thus can be trustworthy. In this section, we ex- 
lain SGX features used in eMotion and the SGX details can be 
ound in Intel Corporation (2016b, 2014) , Costan and Devadas 
2016) , and Anati et al. (2013) . 

.1. SGX data structures 

GX data structures are a collection of data structures used 

o manage enclave operations. The EPC, a subset of the PRM,
tores these data structures along with the contents of the 
nclaves. The SGX-enabled processor records the metadata of 
ach EPC page in the Enclave Page Cache Map (EPCM). In this 
ection, we briefly explain the structures used in eMotion. 

SGX Enclave Control Structure (SECS) is metadata associ- 
ted with each enclave. A dedicated EPC page, PT_SECS , stores 
ECS. SECS is allocated when an enclave is created and deallo- 
ated when the enclave is destroyed. This structure contains 
nformation of enclave identification (ID), enclave measure- 

ent, and enclave control. SECS identifies an enclave inside 
nd outside the processor. 

Thread Control Structure (TCS) is metadata used to support 
he multi-thread execution of an enclave code. A dedicated 

PC page, PT_TCS , stores TCS. Each logical processor uses TCS 
o execute the enclave code. 
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PAGEINFO (Page Information) is an architectural data struc-
ture used as a parameter in EPC management instructions.
This data structure contains the addresses of the enclave
page, SECINFO (Security Information)/PCMD (Page Crypto
Metadata), and SECS. SECINFO consists of flags that describe
the state of the enclave page. PCMD is crypto metadata associ-
ated with a paged-out EPC page that includes enclave ID, MAC
(Message Authentication Code) for the evicted EPC page, page
metadata, etc. 

2.2. Local attestation 

Local attestation is a cryptographic way for internal enclaves
to attest other enclaves that reside inside the processor for
providing higher-level functions like remote attestation. An
enclave can prove its identity to other enclaves by produc-
ing REPORT because the signature block in the REPORT is pro-
duced by the same platform and thus is verifiable inside the
processor. 

2.3. Remote attestation 

Remote attestation is a cryptographic way for remote entities
to attest to the trustworthiness of the underlying hardware
platform and the running enclaves. Intel provides the enclave
for remote attestation, Quoting Enclave (QE), as an Architec-
tural Enclave (AE) that is the privileged enclave in the SGX
framework. QE produces QUOTE and the remote entities verify
the signature block in the QUOTE by using the public key from
the Intel Enhanced Privacy ID (EPID) group key. 

2.4. EPC page swapping 

The BIOS sets the size of the PRM, and thus SGX supports EPC
page swapping for the OS/VMM to evict EPC pages into un-
trusted memory in order to overcome the limited size of the
PRM. EPA allocates a version array where random numbers
used to encrypt each EPC page for the anti-replay are stored.
EWB evicts EPC pages with encryption and integrity protection,
and ELDU/B loads them with integrity check and decryption.
Thus, EPC paging instructions can maintain the same security
properties (confidentiality, anti-replay, and integrity) with the
PRM. The key used in this mechanism is unique for the spe-
cific processor and the outside of the processor cannot access
this key. Prior to the eviction, EWB assures that the EPC pages
have been blocked and the running enclave is stopped. 

3. Problem definition 

3.1. System models 

We consider two different physical machines, the source host
( H S ) and the destination host ( H D ) where the source VMM
( VMM S ) and the destination VMM ( VMM D ) are running. In gen-
eral, the VMM supports the migration of multiple VMs concur-
rently. For the simplicity and focusing on the intrinsic prob-
lems of enclave migration, we assume that H S has a single
VM ( V ) which uses enclaves ( E ) including AEs and E has no
sealed data. VMM S executes a migration protocol P to transfer
the memory pages of V and E along with the VM state ( S ) to
VMM D . VMM D also executes P to load the memory pages of V
and E along with S into its memory for restoring V and E. H S

and H D locate in the same network infrastructure where they
can communicate each other and access the same VM image
of V . 

3.2. Threat models 

We trust only enclaves and the mechanisms implemented in
the SGX-enabled processors. VMM S and VMM D are usually op-
erating as intended, but they can become malicious when the
attacker Adv . corrupts them via the security attacks or soft-
ware bugs of the VMMs and/or the VMs. As a result, Adv . can
have full control over the memory and the network resources
of the VMMs and the VMs, and it can read all memory pages
of DRAM excluding the PRM and sniff all network packets.
When VMM S and VMM D execute P, Adv . attempts to acquire
the valuable information of E by sniffing the transferred mem-
ory pages and reading the memory pages that two VMMs can
access. 

Adv . can conduct the attacks like rollback and forking at-
tacks ( Brandenburger et al., 2017 ) that can violate the data
consistency of E. Adv . that subverts VMM S can also incur the
state inconsistency of E by preventing VMM S from tracking
the changes of the EPC pages during P . We do not consider
these types of attacks because cloud tenants can detect them
via the existing detection mechanism ( Brandenburger et al.,
2017 ). Adv . can simply discard messages for executing P ; such
a denial-of-service (DoS) attack is out of scope in this paper. 

3.3. Goals 

To migrate E in the managed manner securely, two different
physical hosts (i.e., H S and H D ) should establish Migration Mas-
ter Key ( MMK ). Also VMM S and VMM D can use MMK to migrate
enclave pages of E . We define the goals of these operations for
secure managed migration of the enclave. 

1: End-to-end protection on migrated enclave pages 
H S and H D should establish MMK without the involvement
of an additional server (e.g., trusted third party). This MMK
should protect the migrated enclave pages between H S and
H D in the end-to-end manner. When evicted to the un-
trusted memory by VMM S , transferred to VMM D by VMM S ,
and loaded to the PRM by VMM D , the migrated enclave
pages should retain Confidentiality, Integrity, and Anti-
replay (CIA) not to ruin the genuine security properties
supported by SGX. This end-to-end protection prevents
Adv . from extorting the sensitive information via sniffing
the migrated enclave pages between two hosts or reading
the untrusted memory in both hosts. 

2: Restricted access to MMK 

Only the designated enclave and the SGX-enabled proces-
sor should be able to access MMK . It is crucial to restrict
the access on MMK only to trustworthy parties because
Adv . can attempt to steal MMK by reading the untrusted
memory in both hosts. If other enclaves except for the des-
ignated enclave are malicious or erroneous, Adv . can use
these enclaves to export MMK to the untrusted memory.
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Thus, MMK should not be revealed to V, VMM S , VMM D and 

other software components except for the designated en- 
clave. 

3: New SGX instructions for VMMs to migrate running en- 
claves 
New SGX instructions should support VMMs to migrate 
running enclaves because VMMs cope with operations for 
migrating the SGX-enabled VM ( V and E ) in the managed 

manner. Using these instructions, VMM S should be able to 
evict the contents of the enclave as well as the associated 

data structures to the untrusted memory securely. VMM D 

should be able to load the entire enclave pages to its PRM 

by leveraging these instructions. Recall that the EPC page 
swapping mechanism cannot evict some EPC pages (e.g.,
TCS) and can evict only the stopped enclave. 

. Design 

.1. Overview 

Motion is an SGX extension for VMMs to migrate the running 
nclave securely. eMotion consists of additional instructions 
nd migration support as shown in Fig. 1 . Migration Enclave 
ME), a new AE, establishes MMK between H S and H D securely.
Motion adds a new SGX instruction (EPUTKEY), one SECS 
ttribute (MIGRATION) and one register (MKR) to the SGX- 
nabled processor for enforcing the access control on MMK .
Motion also adds new SGX instructions (ESE, ESL) to the SGX- 
nabled processor so that VMM S and VMM D can migrate E us- 
ng MMK . 

Using eMotion, we introduce two phases: key exchange with 
emote attestation ( P 1 ) and secure eviction and loading for migration 
 P 2 ), which compose P . ME executes P 1 to establish MMK via re-

ote attestation and store MMK into MKR (Migration Key Reg- 
ster) of the SGX-enabled processor. VMM S and VMM D proceed 

 2 to migrate E using MMK . 
In this section, we explain eMotion by dividing it into two 

istinct extensions: one for P 1 and the other for P 2 . We also 
resent diagrams of two phases and an architecture based on 
Motion. 

ig. 1 – eMotion; register read/write ( → ) and instruction 

xecu tion ( �). 

M
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.2. SGX extension for key exchange with remote 
ttestation 

o migrate E from H S to H D securely, H S and H D should estab-
ish MMK first. MKR of the SGX-enabled processor should store 
he established MMK for being used in P 2 . Other entities ex- 
ept for the designated enclave and the SGX-enabled proces- 
or should not be able to access this key. 

.2.1. Establishing migration master key by migration enclave 
igration Enclave (ME), which belongs to each host, is an AE 

hat establishes MMK between H S and H D . MEs perform mu- 
ual remote attestation to convince that the SGX-enabled pro- 
essor and ME in the other host are trustworthy. During the 
rocesses of remote attestation, MEs exchange keying mate- 
ials like nonces and agree on MMK per the result of remote 
ttestation. eMotion is independent of the underlying key ex- 
hange protocol used by ME. ME can utilize any key exchange 
rotocols such as Diffie-Hellman (DH) key exchange protocol 
 Diffie and Hellman, 1976 ) depending on the security policy 
efined by the ME provider. 

When enclave migration starts, the VMMs trigger ME Hosts 
o launch P 1 for establishing MMK between the source ME 
 ME S ) and the destination ME( ME D ), that are running in H S and
 D , respectively. Then, ME Host executes its ME to manipulate 

he key exchange messages according to Algorithm 1 . ME gen- 

lgorithm 1 Protocol for manipulating key exchange mes- 
ages.

ME : Generate key exchange message, msg 
h ← H (msg) 
REPORT ← LocalAttest (h ) 

ME → QE : msg, REPORT 
QE: if REPORT is valid then Generate QUOTE else Abort 
QE → ME : QUOTE 
ME: return msg, QUOTE 

rates a key exchange message ( msg ). ME calculates the hash 

alue, h , of msg using a cryptographic hash function, H ( · ). ME
nvokes LocalAttest( · ) to obtain REPORT that includes a 

AC tag for local attestation. LocalAttest( · ) , which calls 
he EREPORT instruction, calculates the MAC of the REPORT 
ata structure containing h using Report key, and feeds the 
AC into the MAC tag. ME requests QE to generate QUOTE by 

ending msg and REPORT . QE checks if REPORT is valid by re- 
omputing the MAC over the REPORT data structure using msg 
nd Report key, and verifying that ME produced REPORT inside 
he same SGX-enabled processor. Note that the SGX imple- 

entation guarantees that Report key is known only to the 
arget enclave (i.e., QE) and the EREPORT instruction ( Anati 
t al., 2013 ). Then, QE produces QUOTE of msg and replies 
UOTE to ME. The ME Host sends QUOTE with msg to the other
E Host for remote attestation. 

ME executes Algorithm 2 to derive MMK . Suppose that the 
E Host receives msg ′ and QUOTE ′ from the other ME Host,
hereas the key exchange message of the ME Host is msg . By

erifying QUOTE ′ for remote attestation, ME convinces that the 
pposite host equips with the legitimate SGX-enabled proces- 
or and AEs. To this end, the ME Host connects to the Intel-
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Fig. 2 – Diagram of key exchange with remote a ttestation; register read/write ( → ) and instruction execution ( �). 

Algorithm 2 Protocol for deriving MMK . 

1: if QUOTE ′ is valid then 

2: if msg is NULL then E xecut e Al gorithm 1 
3: MMK ← Derive (msg, msg ′ ) 
4: else Abort 
5: return MMK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

operated service called Intel Attestation Service (IAS) ( Intel
Corporation ) that verifies QUOTE ′ and returns the result of re-
mote attestation via the protocol that the SGX implementa-
tion supports. If ME did not generate its key exchange message
( msg ), ME executes Algorithm 1 . After remote attestation com-
pletes successfully, MEs invoke Derive( · ) to derive MMK
using keying materials that are exchanged via msg and msg ′

during remote attestation. Only MEs in H S and H D can access
MMK at this point, and any additional server cannot partici-
pate in this key exchange. ME utilizes local and remote attesta-
tion that the SGX implementation supports, and thus refer to
Intel Corporation (2014) , Intel Corporation (2016b) , Costan and
Devadas (2016) , Anati et al. (2013) , and Intel Corporation for
further details. 

4.2.2. Enforcing access control on migration master key 
EPUTKEY is an ENCLU instruction (i.e., user-level instruction)
to store MMK into MKR of the SGX-enabled processor. MEs exe-
cute this instruction after MMK is established so that the SGX-
enabled processors can use MMK to migrate E . For the end-to-
end protection on the migrated enclave pages, MMK should
be accessible only by MEs (i.e., the producers of MMK ) and the
SGX-enabled processors (i.e., the consumers of MMK ). 

To realize this restriction, we add an access control mech-
anism that utilizes Launch Enclave (LE) and MIGRATION. MI-
GRATION is the proposed SECS attribute that is added into the
current SGX implementation in order that only ME can exe-
cute EPUTKEY. LE checks if MIGRATION of each enclave is ille-
gally configured when the enclave is initialized. Furthermore,
the SGX-enabled processor allows only the enclave whose MI-
GRATION is set to true to invoke EPUTKEY. 

Generally, LE is an AE that prevents unauthorized enclaves
from setting specialized attributes (e.g., PROVISONKEY ) of
their SECSs to access the sensitive services (e.g., provision-
ing service). We extend this mechanism to prevent other soft-
ware components including malicious enclaves from falsi-
fying MMK inside and outside the SGX-enabled processor.
During the enclave initialization, LE checks if the initializ-
ing enclaves, except for ME, set their MIGRATIONs to true
illegally by rejecting initialization requests from those en-
claves. This check routine is possible because LE refers to
the list of authorized enclaves and signs the initialization to-
kens (called EINITTOKEN ) for the listed enclaves. Thus, only
MEs can receive valid EINITTOKEN s from LE among enclaves
that attempt to set their MIGRATIONs to true. Without a valid
EINITTOKEN , any enclave cannot be launched in the SGX-
enabled processor ( Costan and Devadas, 2016 ). 

The SGX-enabled processor further checks if a caller en-
clave is ME by examining MIGRATION when the enclave in-
vokes EPUTKEY. If MIGRATION of the enclave does not set to
true, the SGX-enabled processor simply rejects the invocation
of EPUTKEY. This two-step verification, which is enforced by LE
and the SGX-enabled processor, convinces that only ME can
execute EPUTKEY. As a result, MMK is only accessible by the
designated enclaves (i.e., MEs) and the SGX-enabled proces-
sors. 

4.2.3. Diagram of key exchange with remote attestation 

Fig. 2 depicts the diagram of P 1 . Recall that eMotion does not
limit the underlying key exchange protocol if MMK is estab-
lished between ME S and ME D based on remote attestation.
Thus, the flows in Fig. 2 can vary slightly depending on used
protocols. When VMM S launches the migration, VMM D also
starts V with the exact parameters that VMM S used. VMM S ini-
tiates P 1 by establishing the network connection with VMM D .
Then, the VMMs request ME Hosts to execute MEs for oper-
ating the key exchange protocol. ME D generates the key ex-
change message ( msg1 ), and performs local attestation with
its local QE. When local attestation succeeds, the QE produces
QUOTE1 of msg1 . ME D sends msg1 and QUOTE1 to ME S via
VMM D and VMM S . ME S verifies QUOTE1 , and generates the key
exchange message ( msg2 ). Similarly, ME S performs local attes-
tation with its local QE, and receives QUOTE2 from the QE. ME S
sends msg2 and QUOTE2 to ME D via VMM S and VMM D . Then,
ME S generates MMK using keying materials included in msg1
and msg2 . ME D verifies QUOTE2 , and also generates MMK . Fi-
nally, MEs execute EPUTKEY to store the established MMK to
MKR. 

4.3. SGX extension for secure eviction and loading for 
migration 

4.3.1. Privileged instructions for migrating enclaves 
eMotion supports ESE (Enclave Secure Eviction) and ESL (En-
clave Secure Loading) for VMM S and VMM D to evict and load
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he entire enclave pages securely. These instructions are EN- 
LS instructions, privileged instructions, that extend the EPC 

aging instructions ( EWB , ELDU/B ). Migration Key ( MK ) and 

nitialization Vector ( IV ) are derived from MMK inside the SGX- 
nabled processor during the initial execution of ESE and ESL.
SE and ESL utilize NIST SP 800–108 ( Chen, 2009 ) as a key
erivation function that the SGX implementation supports 
 Costan and Devadas, 2016 ). Suppose that KDF (·) is the key 
erivation function that ESE and ESL use. Then, MK and IV are 
erived using Eq. (1) . 

K = KDF (MMK, C MK ) 

IV = KDF (MMK, C IV ) (1) 

here C MK and C IV are constant string values. 
ESE encrypts and integrity protects the migrated enclave 

ages using MK and IV . For anti-replay, IV increases by one 
or each EPC page, but MK does not change until the enclave 

igration completes. Therefore, the protection using MK and 

V can preserve CIA of the migrated enclave pages. Because 
he SGX-enabled processors perform the derivation and the 
rotection, it is impossible for other entities such as the VMMs 
o notice and falsify the migrated enclave pages. 

This derivation can utilize VM identifiers to generate dif- 
erent MK s and IV s from each guest VM when VMM S mi- 
rates multiple SGX-enabled VMs simultaneously. That is, ESE 
nd ESL can derive multiple MK s and IV s for guest VMs by 
assing VM identifiers as input parameters to the underly- 

ng key derivation function. Suppose that VM i is an VM iden- 
ifier where i = 1 , 2 , 3 , · · · . Then, MK and IV for VM i are derived
sing Eq. (2) . 

K i = KDF (MMK, C MK , VM i ) 

IV i = KDF (MMK, C IV , VM i ) (2) 

here MK i and IV i are MK and IV for VM i . 
To reuse the SGX implementation, ESE and ESL execute 

outines similar to the EPC paging instructions. The crypto- 
raphic algorithm used by ESE and ESL is AES-GCM ( Dworkin,
007 ), which is used by the EPC paging instructions and sup- 
orts both confidentiality and integrity. These instructions 
lso take an input as the unit of a single EPC page like other 
GX instructions. 

VMM S executes ESE to evict enclave pages of the running 
 from its PRM to the untrusted memory. ESE evicts the en- 
ire enclave pages, including PT_SECS , PT_TCS , and PT_REG .
his instruction encrypts and integrity protects the enclave 
ages using MK and IV. VMM D executes ESL to load the evicted 

nclave pages from the untrusted memory to its PRM. ESL 
oads the evicted enclave pages into the PRM, where PT_SECS ,
T_TCS , and PT_REG reside. This instruction decrypts and in- 
egrity checks the evicted enclave pages using MK and IV . 

Fig. 3 depicts the flow charts of ESE and ESL. For the sake 
f simplicity, the flow charts omit routines used to check the 
emory alignment. 
ESE ( Fig. 3 a) works as follows: 

1. Checks if the evicting page locates in EPC (if not, page fault 
exception ( #PF ) is raised). 
2. Allocates the output addresses for the evicted EPC page 
and PCMD. 

3. Searches EPCM to retrieve the metadata of the EPC page. 
4. Searches the associated SECS if the EPC page type is 
PT_REG or PT_TCS . 

5. Sets a temporary MAC header using the metadata in the 
searched EPCM. 

6. Encrypts and integrity protects the EPC page. 
7. Sets PCMD to complete the page information using the 

metadata in the searched EPCM. 

ESL ( Fig. 3 b) works as follows: 

1. Checks if the loading page locates in EPC (if not, the page 
fault exception ( #PF ) is raised). 

2. Allocates the input addresses of the evicted EPC page and 

PCMD. 
3. Searches EPCM to retrieve the metadata of the loading EPC 

page. 
4. Sets a temporary MAC header using the metadata in the 

searched EPCM. 
5. Decrypts the EPC page. 
6. Compares the computed MAC with the received one. 
7. Sets EPCM using the decrypted metadata in the temporary 

MAC header. 

.3.2. Diagram of secure eviction and loading for migration 

uring executing P for V, VMM S starts P 2 when VMM S en- 
ounters the memory pages of E in its managed page table.
he initial executions of ESE and ESL use MMK to derive MK 

nd IV , which are utilized to evict and load the entire enclave 
ages securely. VMM S executes ESE to evict the enclave 
ages of E using MK and IV from its PRM to the untrusted
emory. Then, VMM S transfers the evicted enclave pages 

o VMM D . Once VMM S transfers the evicted enclave pages,
MM D executes ESL to load them using MK and IV from the 
ntrusted memory to its PRM. Fig. 4 depicts the diagram 

f P 2 . 
During P 2 , VMM S checks if each enclave page alters by 

racking the accessed and dirty flags of the enclave pages.
he VMM utilizes the Extended Page Table (EPT) to manage 

he VM’s address space that includes the enclave pages. Thus,
MM S can notice the accessed and dirtied EPC pages by scan- 
ing the EPT. When detecting the updated enclave pages,
MM S executes ESE against the updated enclave pages and 

etransmits the output to VMM D . 
VMM S can also transfer the swapped enclave pages to 

MM D during VM migration. Because VMM S swapped out the 
nclave pages due to the lack of its PRM, VMM S can be aware 
f the swapped enclave pages. However, VMM S cannot notice 
he swapped enclave pages if V swaps out the enclave pages 
y itself. This mismatch between VMM S and V can be ad- 
ressed if VMM S emulates SGX instructions for V ( Chakrabarti 
t al., 2017 ). To migrate the swapped enclave pages, VMM S ex- 
cutes the EPC paging instructions to load them to its PRM 

gain and continues to execute ESE for evicting the enclave 
pages. 
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Fig. 3 – Flow charts of ESE and ESL. 

Fig. 4 – Diagram of secure eviction and loading for migration; register read/write ( → ), and instruction execution ( ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. eMotion architecture 

Fig. 5 depicts an architecture to show the practical deployment
of eMotion. We assume that VMM S in H S migrates V along with
E to VMM D in H D . 

P 1 establishes MMK for enclave migration between H S and
H D . When starting P to migrate V along with E, VMM S trig-
gers ME Host, a daemon running in the host, to execute ME S .
ME S proves its authenticity to QE based on local attestation
and to ME D based on remote attestation. In consequence of
remote attestation, ME S and ME D establish MMK and execute
EPUTKEY to store MMK into MKRs of the SGX-enabled proces-
sors. 

In P 2 , VMM S executes ESE to evict the enclave pages of E to
the untrusted memory, and VMM D executes ESL loads them
to its PRM. Because the VMMs manage the memory mappings
of the VM and its enclaves, the VMMs can pass the physical
addresses of the enclave pages (in the PRM) and the evicted
enclave pages (in the untrusted memory) to ESE and ESL, re-
spectively. After loading the enclave pages, VMM D activates
V along with the enclaves including E using S received from
VMM S . Because VMM S transfers VM’s whole memory pages in-
 

 

cluding the entire enclave pages and VM state to VMM D , VMM D

can restore the execution of V and E . 

5. Implementation 

We have implemented a prototype of eMotion on top of
OpenSGX ( Jain et al., 2016 ) in a Dell Inspiron-13-7359 (Intel
Core i5-6200 2.30GHz quad core CPU, 8GB RAM) machine run-
ning Ubuntu 14.04 LTS (64-bit). Using this open source SGX em-
ulator, we add additional instructions and migration support
to demonstrate the operations of eMotion. 

5.1. OpenSGX 

OpenSGX is an open source SGX emulator that emulates the
SGX instructions and provides operating components. This
emulator is implemented on top of QEMU’s user-mode em-
ulation. OpenSGX extends the CPU state of QEMU by adding
CREGS data structure. CREGS maintains registers about the
enclave context and the current instruction pointer. This data
structure controls a program’s next executing point when
the enclave enters and exits. OpenSGX utilizes the QEMU
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Fig. 5 – An architecture of eMotion; key exchange with remote attestation ( ), and secure eviction and loading for 
migration ( ). 
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elper routine and adds helper_sgx_encls(u) for em- 
lating ENCLU/ENCLS instructions. When ENCLU/ENCLS in- 
tructions are invoked, the helper functions implemented in 

elper_sgx_encls(u) are called. 

.2. eMotion on OpenSGX 

e implement three new SGX instructions (EPUTKEY, ESE,
SL), migration support (MEs, MKR and MIGRATION), and other 
GX components (QEs) to OpenSGX. We implement MEs to 
perate a sample of P 1 based on the 1024-bit DH key ex- 
hange protocol ( Diffie and Hellman, 1976 ) to establish MMK .
e also implement QEs to use a pre-defined RSA key pair 

or signing each key exchange message from MEs and ver- 
fying each REPORT from MEs. QE and ME utilize PolarSSL 
 PolarSSL Project ) for local and remote attestation. We add 

PUTKEY to helper_sgx_enclu , and insert MKR into the 
REGS data structure of QEMU SGX. We add ESE and ESL to 
elper_sgx_encls and implement the routine to derive MK 

nd IV when these privileged instructions execute for the first 
ime. To support CIA of the evicted enclave pages, ESE and ESL 
everage OpenSSL 1.0.2d ( OpenSSL Project ) to encrypt and in- 
egrity protect the enclave pages based on AES-GCM ( Dworkin,
007 ). 

We add a new OpenSGX application (hereafter, vmm) that 
cts as the VMMs ( VMM S and VMM D ) for executing P M 

. After
 1 completes, vmm in each host calls the functions of the OS- 
evel emulation wrappers for ESE and ESL. Once both hosts 
omplete P 2 , vmm in H D attempts to re-enter the migrated en- 
lave ( E ) and check if enclave migration has been completed. 

.3. Implementation result 

n the current prototype, we add a total of 2,286 lines of code to 
penSGX and confirm the operations of eMotion. Fig. 6 shows 

he implementation result of the prototype. We describe the 
xecution steps as follows: 
1. ME S requests ME D to start P 1 . Then, ME D generates msg1 ,
and requests the destination QE to generate QUOTE1 
(Fig. 6 e). 

2. When local attestation succeeds, ME D responds with 

QUOTE1 of msg1 for remote attestation (Fig. 6 f). 
3. When receiving msg1 and QUOTE1 , ME S verifies QUOTE1 .

If remote attestation succeeds, ME S generates msg2 , and 

requests the source QE to generate QUOTE2 (Fig. 6 b). 
4. When local attestation succeeds, the source QE responds 

with QUOTE2 of msg2 for remote attestation (Fig. 6 c). 
5. When receiving msg2 and QUOTE2 , ME D verifies QUOTE2 .

If remote attestation succeeds, ME D generates MMK based 

on msg1 and msg2 . In the same way, ME S generates MMK 

( Fig. 6 b and e). 
6. MEs cooperate with E s in both hosts for executing EPUTKEY 

to store MMK to MKR (Fig. 6 a and d). 
7. The vmm in H S executes ESE to evict the entire enclave 

pages of E (Fig. 6 a). 
8. The vmm in H D executes ESL to load the evicted enclave 

pages of E . Then, vmm again launches E to check if E is
migrated successfully ( 6 d). 

As indicated by the arrow in Fig. 6 d, vmm migrates E using
Motion. 

. Evaluation 

.1. Analysis 

e evaluate eMotion from the perspective of the goals defined 

n Section 3 . 
In P 1 , ME S and ME D in both hosts perform remote at- 

estation to convince that two legitimate enclaves establish 

MK because local and remote attestation can vouch for this 
uthentication. Additionally, it promises that two legitimate 
GX-enabled processors execute this protocol because only 
enuine processors can perform remote attestation success- 
ully. During P 2 , ESE encrypts and integrity protects the en- 
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Fig. 6 – Implementation result of eMotion in OpenSGX. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

clave pages and ESL integrity checks and decrypts the evicted
enclave pages using MK and IV , which are derived from MMK.
IV increases by one for each EPC page to guarantee anti-replay.
Thus, the migrated enclave pages can guarantee CIA during
enclave migration. During P 1 and P 2 , no additional trusted
server involves, but rather two participating hosts establish
MMK directly to provide the end-to-end protection on the mi-
grated enclave pages. Adv . cannot acquire MMK because it can-
not access the EPC pages directly, which is protected by the
SGX-enabled processor, and the access on MMK is restricted
only to MEs and the SGX-enabled processors. Adv . cannot read
the migrated enclave pages in plain-text because the SGX-
enabled processor encrypts the migrated enclave pages. More-
over, Adv . cannot violate the security properties of the mi-
grated enclave pages during enclave migration because ESE
and ESL guarantee CIA of the migrated enclave pages ( G1 ).
eMotion stores MMK in MKR of the SGX-enabled processor and
restricts the execution of EPUTKEY only to MEs. Thus, no other
software including the VMs and the VMMs can use or change
MMK illegally. This restriction on EPUTKEY is not avoidable
because LE prevents other enclaves from setting MIGRATION
during the enclave initialization, and the SGX-enabled proces-
sor checks if the caller sets MIGRATION when EPUTKEY is in-
voked. Adv . cannot hijack MMK established by MEs as well be-
cause they are infeasible to access directly the EPC pages and
MKR of the SGX-enabled processor where MMK resides ( G2 ). 
We add new SGX instructions (ESE and ESL) to evict and
load the entire enclave pages including ones that cannot be
evicted and loaded by the existing EPC paging instructions.
During P 2 , VMM S can evict the entire enclave pages of the run-
ning E to the untrusted memory using ESE and VMM D can load
the evicted enclave pages to its PRM using ESL. To migrate the
running E, VMM S transfers the update enclave pages continu-
ally and transfers its running state S to VMM D at the end of
P M 

. Because of this operation, VMM D can restore the mem-
ory mappings for E and activate the execution of E . Thus, us-
ing newly added SGX instructions, two VMMs can migrate the
running E ( G3 ). 

6.2. Performance 

We measure the overhead of eMotion to estimate the im-
pact on the migration time and migration downtime of SGX-
enabled VMs. We use the prototype based on OpenSGX as
mentioned in Section 5 . Though this performance evaluation
is not measured in the actual SGX-enabled machine, we ex-
pect that these results can help others understand and esti-
mate the overheads caused by managed enclave migration. 

6.2.1. Overhead in key exchange with remote attestation 

Table 1 shows the overhead caused by key exchange with re-
mote attestation in ME and QE in terms of the number of in-
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Table 1 – The number of instructions in ME and QE during 
key exchange with remote attestation. 

ME QE 

SGX instructions 110 39 
Normal instructions 144M 14M 

Table 2 – Elapsed time for secure eviction and loading for 
migration. 

VMM S VMM D 

Elapsed time (ms) 6.69 ms 4.31 ms 
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Fig. 7 – Elapsed time for secure eviction and loading for 
migration on enclaves; Directory node and Exit node are 
Tor enclaves in Jain et al. (2016) . 
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tructions. We refer to the model used in Kim et al. (2015) to 
alculate CPU cycles consumed by ME and QE for operating 
 1 . Therefore, we assume that each SGX instruction consumes 
0K CPU cycles ( Baumann et al., 2015 ), and uses 1.8 CPU cycles
or each normal instruction ( Kim et al., 2015 ). ME consumes 
59M cycles to perform 1024-bit DH key exchange protocol 
nd derive MMK together with local and remote attestation.
E consumes 25M cycles to generate and verify QUOTE . Note 

hat P 1 occurs only once before the actual migration starts.
hus, this overhead is minimal and does not affect the migra- 

ion downtime. 

.2.2. Overhead in secure eviction and loading for migration 

e also measure the overhead caused by secure eviction and 

oading for migration in VMM S and VMM D . For this, we im- 
lement an sample enclave, which occupies 616 EPC pages 

ncluding PT_SECS , PT_TCS , and PT_REG . Recall that VMM S 

nd VMM D execute ESE and ESL for each memory page in the 
nit of a single EPC page. Obviously, the number of instruc- 
ions that VMM S and VMM D execute in P 2 changes according 
s the number of EPC pages that consists of E increases. 

Because the overhead in P 2 influences the migration down- 
ime directly, we measure the elapsed time for P 2 . Table 2 re- 
orts that the elapsed time for P 2 in VMM S is about 6.69 ms 
nd the one for P 1 in VMM D is about 4.31 ms . As shown in
ig. 3 , the additional routines used to check the condition and 

earch SECS in ESE cause this gap between two measured 

imes. 
Using the measured time, we can further estimate the 

lapsed time for a single ESE (10.9 us) and ESL (7.0 us). Be- 
ides the sample enclave, we calculate the elapsed time to 
igrate Tor enclaves used as a case study for OpenSGX. The 

or enclaves include Directory node (472 EPC pages) and Exit 
ode (475 EPC pages) as mentioned in Jain et al. (2016) . Fig. 7
hows the elapsed time for secure eviction and loading for 
igration on the enclaves; our sample enclave, Directory 

ode, and Exit node. This estimation can help cloud tenants 
o profile the impacts of their SGX-enabled VMs during live 

igration. 
. Discussion 

.1. Possible deployments 

he existing live migration of VMs ( Clark et al., 2005; Hines 
nd Gopalan, 2009 ) can use eMotion by adding two phases,
s depicted in Fig. 8 . Key exchange with remote attestation 

ccurs during the pre-migration stage to establish the migra- 
ion master key between two participating hosts before the 
ctual live migration of the SGX-enabled VM begins. During 
he iterative pre-copy and/or the stop and copy stages, secure 
viction and loading for migration operates using the estab- 
ished migration master key when the VMM encounters the 
PC pages. Similarly, other live migration protocols ( Sahni and 

arma, 2012 ) can add eMotion to support live migration of 
GX-enabled VMs. 

.2. Limitations 

his paper mainly focuses on the extensions of SGX imple- 
entation to enable managed enclave migration. The proto- 

ype based on OpenSGX confirms the operations of eMotion.
owever, we cannot confirm the operations of the eMotion- 
nabled VMMs because OpenSGX, which uses the user-mode 
EMU emulation, does not run on top of the VMM. eMotion 

oes not consider that the enclave has the sealed data, which 

s encrypted by a unique key inside the SGX-enabled pro- 
essor. The VMM cannot notice the sealed data because the 
nclave performs the sealing operation by itself. Thus, mi- 
rating the sealed data of the enclave is another challeng- 
ng problem. eMotion can extend to cope with the attacks 
hat the active adversaries can perform by combining with 

he existing security mechanisms. The active adversaries that 
ubvert the VMMs can incur the state inconsistency in the 
igrated enclave pages by preventing the VMMs from track- 

ng the updated enclave pages. The existing VMM attestation 

echanisms ( Greene, 2012; TCG, 2012 ) can launch before en- 
lave migration to verify if the genuine VMM launched and 

s running on the source host. Moreover, users can utilize the 
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Fig. 8 – Possible deployments of eMotion to existing live migration of VMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

existing detection mechanism ( Brandenburger et al., 2017 ) to
detect the rollback and forking attacks that the active adver-
saries can perform. 

7.3. Future work 

We will study about migrating the sealed data of the enclave
securely. We also will research other SGX emulators like S-
OpenSGX ( Choi et al., 2017 ) that run on top of the VMM so
that we realize the eMotion-enabled VMM. Then, our proto-
type will extend to confirm the operations of the eMotion-
enabled VMM. 

8. Related work 

8.1. Secure live migration of SGX enclaves 

Enclave migration is one of the technically challenging is-
sues for introducing SGX into cloud computing, and thus few
peer-reviewed papers on enclave migration can be found ( Gu
et al., 2017; Park et al., 2016 ). Instead, we refer to Intel’s patents
( Rozas et al., 2017; 2018 ) as supplementary references. 

Our previous work ( Park et al., 2016 ) identified problems
in live migration of SGX-enabled VMs and presented a con-
ceptual scheme to address the problems without the actual
implementation. Gu et al. (2017) presented a secure enclave
migration in a self-migration manner. They first introduced
an attack that causes data inconsistency and control incon-
sistency when the self-migration manner of the enclave oc-
curs and proposed two-phase checkpointing to deal with the
attack. Only the control thread running in the migrated en-
clave can access the encryption key and the integrity key for
protecting the migrated enclave pages. This approach neces-
Table 3 – Comparison with the existing migration schemes for 

eMotion Gu et al. (201

G1 � � 

G2 � � 

G3 Managed ( � ) Self ( × ) 
sitates the enclave to use an additional library that supports
enclave migration, and thus it is impossible to migrate the
enclave without the specific library. Because this work is on
the basis of the self-migration manner, the authors presented
only conceptual design suggestions for new SGX instructions.

Intel presented two patents ( Rozas et al., 2017; 2018 ) to en-
able live migration of SGX-enabled VMs in the managed mi-
gration manner. Intel defines SGX domain control structure
(SDCS) that stores the migration capable keys, which are gen-
erated by the controlling enclave. The source host transmits
SDCS to the destination host via the trusted server, and this
SDCS protects the enclave pages for secure enclave migration.
Intel also presents the instructions for migrating the enclave
using SDCS. Currently, the practical implementation of these
patents is not realized yet. Moreover, the transportation of the
migration capable keys is still conceptual and needs the addi-
tional trusted server. Because the trusted server mediates the
transportation of the migration capable keys, it is difficult to
ensure that only the participating hosts can access the migra-
tion capable keys. Accordingly, the end-to-end protection on
the migrated enclave pages cannot be guaranteed. 

Table 3 shows this comparison between eMotion and the
existing migration schemes for SGX enclaves against the goals
defined in Section 3.3 . However, we cannot perform the experi-
mental comparison among eMotion and other approaches be-
cause the Intel’s patents( Rozas et al., 2017; 2018 ) are not im-
plemented yet and the source code of Gu et al. (2017) is not
available. 

8.2. SGX in cloud computing and virtualization 

SGX has been leveraged to isolate and protect code and data
in cloud computing and virtualization ( Baumann et al., 2015;
Schuster et al., 2015; Dinh et al., 2015; Hunt et al., 2016 ;
SGX enclaves. 

7) Intel’s patents ( Rozas et al., 2017; 2018 ) 

×
×
Managed ( � ) 
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rnautov et al., 2016; Bhardwaj et al., 2016 ). Baumann et al.
2015) provides shielded execution of unmodified applica- 
ions. VC3 ( Schuster et al., 2015 ) and M 

2 R ( Dinh et al., 2015 )
resent secure and privacy-preserving MapReduce computa- 
ions, respectively. Hunt et al. (2016) is a distributed sandbox 
o protect sandbox instances, and SCONE ( Arnautov et al.,
016 ) is a secure container mechanism for Docker. AirBox 
 Bhardwaj et al., 2016 ) supports fast, scalable and secure edge 
unctions for device-cloud interactions. Brandenburger et al.
2017) introduced Lightweight Collective Memory (LCM) to de- 
ect rollback and forking attacks by using a distributed proto- 
ol for maintaining consistency information by clients. LCM 

ddresses the important trust issues in cloud computing, but 
ts migration mechanism needs an enclave to stop its pro- 
essing and to supplement with additional implementation 

or enclave migration. These SGX-based mechanisms lever- 
ge the hardware-assisted isolation and protection of applica- 
ions’ code and data, so the inherent security concerns raised 

n the fields have been addressed. However, without the con- 
ideration of enclave migration, these approaches can suffer 
rom the management problems such as fault management,
oad balancing, system maintenance, etc. Hence, eMotion can 

lleviate these concerns without the loss of security guaran- 
eed by SGX. 

Recently, Intel extends the SGX support to the VMM-based 

irtualization ( Intel Corporation, 2016a; Chakrabarti et al.,
017 ). Intel released the patches for SGX virtualization that en- 
ble KVM or Xen guest VMs to run enclaves ( Intel Corporation,
016a ). Intel also presented the SGX Oversubscription Exten- 
ions ( Chakrabarti et al., 2017 ) that overcome the difficulties in 

irtualizing SGX memory using the existing EPC paging swap- 
ing. 

. Conclusion 

n this paper, we propose eMotion, an SGX extension for mi- 
rating enclaves, that adds additional instructions and mi- 
ration support to the SGX architecture for enabling the 
ecure managed migration of running enclaves. eMotion 

upplements the current SGX implementation with three SGX 

nstructions, one register, one SECS attribute and one AE for 
igrating the running enclave. Using eMotion, the participat- 

ng hosts directly establish the migration master key used in 

nclave migration and the VMMs in the hosts migrate run- 
ing enclaves using this established key without the loss of 

he security properties guaranteed by SGX. eMotion restricts 
he access on the migration master key only to the desig- 
ated AEs (MEs) and the SGX-enabled processors. We imple- 
ent a prototype on top of OpenSGX, an open source SGX 

mulator, to demonstrate the operations of eMotion and to 
stimate the impact of eMotion on the migration time and 

he migration downtime. We hope that Intel refers to eMotion 

or realizing managed enclave migration in the actual SGX- 
nabled processor and the SGX framework, and cloud tenants 
se the evaluation result to estimate the impact of eMotion 

n their SGX-enabled VMs during live migration. As future 
ork, we will study about migrating the sealed data of enclave,
nd extend our prototype to realize the eMotion-enabled 
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